Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta chứng minh: \(\frac{HA}{CA}.\frac{HB}{CB}+\frac{HB}{AB}.\frac{HC}{AC}+\frac{HC}{BC}.\frac{HA}{BA}=1\)
Đặt \(\frac{HA}{CB}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\) ta có: \(xy+yz+zx=1\)
Áp dụng bất đẳng thức Bu - nhi - a cho ba số x, y, z ta có: \(\left(xy+yz+zx\right)^2\le\left(x^2+y^2+z^2\right)^2\)
Hay \(\left(x^2+y^2+z^2\right)^2\ge1\Leftrightarrow x^2+y^2+z^2\ge1\)
Giả sử \(\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}=x+y+z\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx>1+2=3\)
Từ đó suy ra \(x+y+x\ge\sqrt{3}\Leftrightarrow\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}\ge\sqrt{3}\).
A B C A' B' C' H I M N
a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)
mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)
\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)
A B C A' H I I x D
vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA giao điểm Cx tại I
\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật
\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)
Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC
\(\Rightarrow\)BD2 \(\le\)( BC + CD )2
\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2
\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2
\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2
\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2 . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC
tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC
4AA'2 \(\le\)( AB + AC )2 - BC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC
Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)
\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều
a, dễ c/m SHBC/SABC=HA'/AA'
SHAB/SABC=HC'/BB'
SHAC/SABC=HB'/BB'
Cộng theo vế các đẳg thức trên ,ta có đpcm
b, Áp dụng t/c đg phân giác vào các tam giác ABC,ABI,AIC ta có :
BI/IC=AB/AC , AN/NB=AI/BI, CM/MA=IC/AI
nhân từng vế rồi rút gọn BI/IC.AN/NB.CM/MA=1 => AN.NI.CM=BN.IC.AM
a) Kẻ HD//AB, HE//AC
−>AD=HE;AE=AH
Theo BĐT trong tam giác :
AH < AE+HE = AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−> HA+HB+HC < AE+AD+BE+DC = AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
-> có : 3(HA+HB+HC)<2(AB+AC+BC)
-> ( HA + HB + HC ) x \(\frac{3}{2}\) < AB + AC + BC
bây giờ mik làm có muộn lắm ko bạn???