K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

a) Kẻ HD//AB, HE//AC

−>AD=HE;AE=AH
Theo BĐT trong tam giác :

AH < AE+HE = AE+AD

xét  ΔHDC vuông tại H :HC<DC

       ΔBHE vuông tại H : HB<BE

−> HA+HB+HC < AE+AD+BE+DC = AB+AC

chứng minh tương tự:

HA+HB+HC<AB+BC

HA+HB+HC<AC+BC

  -> có : 3(HA+HB+HC)<2(AB+AC+BC)

-> ( HA + HB + HC ) x \(\frac{3}{2}\)
 < AB + AC + BC

bây giờ mik làm có muộn lắm ko bạn???

2 tháng 8 2019

A B C E D F H I G

a) Qua H kẻ HG//AB  cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.

=> HI vuông BH ; CH vuông HG

và AIHG là hình bình hành

Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)

Xét tam giác CHG vuông tại H => CH<CG  

=> CH+BH + AH< BI+CG +AH 

Ta lại có AH <AI+IH (  bất đẳng thức trong tam giác AIH)

mà IH=AG ( AIHG là hình bình hành theo cách vẽ )

=> AH < AI+AG 

Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC

b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC) 

Chứng minh tương tự như câu a.

Ta có: \(AB+AC>HA+HB+HC\)

\(BC+AC>HA+HB+HC\)

\(AB+BC>HA+HB+HC\)

Cộng theo vế ta có:

\(2AB+2AC+2BC>3HA+3HB+3HC\)

=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)

=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)

19 tháng 10 2016

Đầu tiên ta chứng minh: \(\frac{HA}{CA}.\frac{HB}{CB}+\frac{HB}{AB}.\frac{HC}{AC}+\frac{HC}{BC}.\frac{HA}{BA}=1\)


Đặt \(\frac{HA}{CB}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\) ta có: \(xy+yz+zx=1\)
Áp dụng bất đẳng thức Bu - nhi - a cho ba số x, y, z ta có: \(\left(xy+yz+zx\right)^2\le\left(x^2+y^2+z^2\right)^2\)
Hay \(\left(x^2+y^2+z^2\right)^2\ge1\Leftrightarrow x^2+y^2+z^2\ge1\)
Giả sử \(\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}=x+y+z\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx>1+2=3\)
Từ đó suy ra \(x+y+x\ge\sqrt{3}\Leftrightarrow\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}\ge\sqrt{3}\).

17 tháng 10 2016

Cái này thì mình chịu thôi ! Có biết cái khỉ gió ma toi gì đâu mà giải ! Hì Hì ! ^_^ Sorry nha

22 tháng 2 2020

hình bạn tự vẽ nha

a) Xét tam giác ABB' và tg HBC' có

góc AB'B= HC'B

và góc ABB' chung

=> tg ABB' đồng dạng với tg HBC'(g-g)

=> BH/AB = BC'/BB'

=> BH.BB'=BC'.BA

Tương tự CB'.CA=CH.CC'

và BH.BB'=BA'.BC (1)

và CH.CC'=CA'.BC(2)

cộng 1 và 2 => BH.BB'+CH.CC'=BC2

nên BC'.BA+CB'.CA=BC2

22 tháng 8 2018

ARMY (.) nha

9 tháng 12 2016

a,Xet tam giac HBC co : 

BJ=JH

HK=KC

=>JK la dtb cua tam giac HBC

=> JI=1/2BC va JI//BC(1)

Xét tam giác ABC có : 

MA=MB

AP=PC

=>MP la tdb

=>MP=1/2BC va MP//BC(2)

Tu(1)(2) suy ra : MP=BC va MP//BC

=> MPJK la HBH 

Xét tứ giác AHC co :

HK=KC

AP=PC

=>PK la tdb

=>PK=1/2HA va PC//HA

Mà AH vuông góc với BC va BC//JK

=> PK vuong goc voi JK

Mà trong hình bình hành có 1 góc vuông là hình chữ nhật 

k mk nha .

12 tháng 3 2017

mình 0 bt nhng ai chat nhìu thì kt bn với mình nha

13 tháng 3 2017

c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx                       

-Chứng minh được góc  BAD vuông, CD = AC, AD = 2CC’                 

 ta có: BD BC + CD                                            

-BAD vuông tại A nên: AB2+AD2 = BD2                                                 

     AB+ AD2 >=   (BC+CD)2                                                                

        AB+ 4CC’2 >= (BC+AC)2

                  4CC’2  >=(BC+AC)– AB2                                                                     

Tương tự:  4AA’2 >= (AB+AC)– BC2

                  4BB’2   (AB+BC)– AC                                                     

 4(AA’+ BB’+ CC’2)>=  (AB+BC+AC)2