K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

A B C A' B' C' H I M N

a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)

Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)

\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)

mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)

\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)

19 tháng 4 2019

A B C A' H I I x D

vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA  giao điểm Cx tại I

\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật

\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)

Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC

\(\Rightarrow\)BD2 \(\le\)( BC + CD )2 

\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2

\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2 

\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2

\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2   . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC

tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2    Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC

4AA'2 \(\le\)( AB + AC )2 - BC2   Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC

Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)

\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)

Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều

 
15 tháng 7 2018

a) Kẻ HD//AB, HE//AC

−>AD=HE;AE=AH
Theo BĐT trong tam giác :

AH < AE+HE = AE+AD

xét  ΔHDC vuông tại H :HC<DC

       ΔBHE vuông tại H : HB<BE

−> HA+HB+HC < AE+AD+BE+DC = AB+AC

chứng minh tương tự:

HA+HB+HC<AB+BC

HA+HB+HC<AC+BC

  -> có : 3(HA+HB+HC)<2(AB+AC+BC)

-> ( HA + HB + HC ) x \(\frac{3}{2}\)
 < AB + AC + BC

bây giờ mik làm có muộn lắm ko bạn???

24 tháng 1 2017

a, dễ c/m SHBC/SABC=HA'/AA' 

               SHAB/SABC=HC'/BB'

              SHAC/SABC=HB'/BB'

Cộng theo vế các đẳg thức trên ,ta có đpcm

b, Áp dụng t/c đg phân giác vào các tam giác ABC,ABI,AIC ta có :

BI/IC=AB/AC , AN/NB=AI/BI,  CM/MA=IC/AI

nhân từng vế rồi rút gọn BI/IC.AN/NB.CM/MA=1 => AN.NI.CM=BN.IC.AM 

24 tháng 1 2017

c, mk ko làm đc, bn có thể nhờ ng khác

12 tháng 3 2017

mình 0 bt nhng ai chat nhìu thì kt bn với mình nha

13 tháng 3 2017

c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx                       

-Chứng minh được góc  BAD vuông, CD = AC, AD = 2CC’                 

 ta có: BD BC + CD                                            

-BAD vuông tại A nên: AB2+AD2 = BD2                                                 

     AB+ AD2 >=   (BC+CD)2                                                                

        AB+ 4CC’2 >= (BC+AC)2

                  4CC’2  >=(BC+AC)– AB2                                                                     

Tương tự:  4AA’2 >= (AB+AC)– BC2

                  4BB’2   (AB+BC)– AC                                                     

 4(AA’+ BB’+ CC’2)>=  (AB+BC+AC)2                                                                    

                              

22 tháng 2 2020

hình bạn tự vẽ nha

a) Xét tam giác ABB' và tg HBC' có

góc AB'B= HC'B

và góc ABB' chung

=> tg ABB' đồng dạng với tg HBC'(g-g)

=> BH/AB = BC'/BB'

=> BH.BB'=BC'.BA

Tương tự CB'.CA=CH.CC'

và BH.BB'=BA'.BC (1)

và CH.CC'=CA'.BC(2)

cộng 1 và 2 => BH.BB'+CH.CC'=BC2

nên BC'.BA+CB'.CA=BC2

2 tháng 8 2019

A B C E D F H I G

a) Qua H kẻ HG//AB  cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.

=> HI vuông BH ; CH vuông HG

và AIHG là hình bình hành

Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)

Xét tam giác CHG vuông tại H => CH<CG  

=> CH+BH + AH< BI+CG +AH 

Ta lại có AH <AI+IH (  bất đẳng thức trong tam giác AIH)

mà IH=AG ( AIHG là hình bình hành theo cách vẽ )

=> AH < AI+AG 

Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC

b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC) 

Chứng minh tương tự như câu a.

Ta có: \(AB+AC>HA+HB+HC\)

\(BC+AC>HA+HB+HC\)

\(AB+BC>HA+HB+HC\)

Cộng theo vế ta có:

\(2AB+2AC+2BC>3HA+3HB+3HC\)

=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)

=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)

23 tháng 4 2020

tự kẻ hình nha bạn

a, có \(\hept{\begin{cases}S_{HBC}=\frac{BC\cdot HA'}{2}\\S_{ABC}=\frac{BC\cdot AA'}{2}\end{cases}}\) \(\Rightarrow\frac{S_{HBC}}{S_{ABC}}=\frac{BC\cdot HA'}{2}\div\frac{BC\cdot AA'}{2}=\frac{HA'}{AA'}\)

có tương tự ta có \(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\)  và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)

\(\Rightarrow\frac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)

\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

23 tháng 4 2020

để mjnh làm tiếp câu b 

b, IN là pg của \(\widehat{AIB}\) (gt)

\(\Rightarrow\frac{NB}{IB}=\frac{NA}{AI}\) (tc)

\(\Rightarrow NB\cdot AI=IB\cdot NA\)

\(\Rightarrow NB\cdot AI\cdot CM=IB\cdot AN\cdot CM\left(1\right)\)

IM là pg của \(\widehat{AIC}\)  (gt)

\(\Rightarrow\frac{AM}{AI}=\frac{MC}{IC}\)

\(\Rightarrow AM\cdot IC=AI\cdot CM\)

\(\Rightarrow AM\cdot IC\cdot NB=AI\cdot CM\cdot NB\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow AN\cdot BI\cdot CM=BN\cdot CI\cdot AM\)