Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BCDE có
\(\widehat{BDC}=\widehat{BEC}=90^0\)
hay BCDE là tứ giác nội tiếp
b) Xét tứ giác BDEC có:
∠(BEC) = ∠(BDC) = 90 0
Mà 2 góc này cùng nhìn cạnh BC
⇒ Tứ giác BDEC là tứ giác nội tiếp
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=180^0\)
nên AEHD là tứ giác nội tiếp
hay A,E,H,D cùng thuộc 1 đường tròn
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)
nên BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
a) Xét tứ giác AEHD có:
∠(AEH) = 90 0
∠(ADH) = 90 0
⇒∠(AEH) + ∠(ADH) = 180 0
⇒ Tứ giác AEHD là tứ giác nội tiếp.
Ta có: ∆ABD ~ ∆ACE( g.g) => A D A B = A E A C
=> S A D E S A B C = A E A C 2
Mà trong ∆ACE có cosA = A E A C
=> S A D E S A B C = cos A 2
=> S A D E = S A B C . cos 2 A
Tam giác ABD vuông tại D có \(\cos\widehat{A}=\cos60^0=\dfrac{AD}{AB}=\dfrac{1}{2}\)
Tam giác AEC vuông tại E có \(\cos\widehat{A}=\cos60^0=\dfrac{AE}{AC}=\dfrac{1}{2}\)
Ta có \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\\\widehat{A}.chung\end{matrix}\right.\Rightarrow\Delta ADE\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{1}{2}\\ \Rightarrow2DE=BC\)
Bạn tự vẽ hình
Đặt \(AB=x\)
Xét \(\Delta DAB\) vuông tại D, ta có:
\(\cos A=\dfrac{AD}{AB}\) (tỉ số lượng giác)
\(\Rightarrow AD=AB.\cos A=x.\cos60^o=0,5x\)
Xét \(\Delta ADB\) và \(\Delta AEC\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\widehat{ABD}=\widehat{ACE\left(2gocphunhau\right)}\end{matrix}\right.\)
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g.g\right)\)
Xét \(\Delta ABC\) và \(\Delta ADE\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(\Delta ABD\sim\Delta ADE\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\sim\Delta ADE\left(c.g.c\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DE}\\ \Rightarrow\dfrac{x}{0,5x}=\dfrac{BC}{DE}\\ \Rightarrow BC=\dfrac{DE.x}{0,5x}=2DE\)
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
mà góc A chung
nên ΔAED đồng dạng với ΔABC
b: góc xAC=góc ABC
góc ABC=góc ADE
=>góc xAC=góc ADE
=>Ax//DE