K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác BCDE có 

\(\widehat{BDC}=\widehat{BEC}=90^0\)

hay BCDE là tứ giác nội tiếp

22 tháng 12 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác BDEC có:

∠(BEC) = ∠(BDC) =  90 0

Mà 2 góc này cùng nhìn cạnh BC

⇒ Tứ giác BDEC là tứ giác nội tiếp

a: Xét tứ giác AEHD có 

\(\widehat{AEH}+\widehat{ADH}=180^0\)

nên AEHD là tứ giác nội tiếp

hay A,E,H,D cùng thuộc 1 đường tròn

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)

nên BEDC là tứ giác nội tiếp

hay B,E,D,C cùng thuộc 1 đường tròn

3 tháng 3 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác AEHD có:

∠(AEH) =  90 0

∠(ADH) =  90 0

⇒∠(AEH) + ∠(ADH) =  180 0

⇒ Tứ giác AEHD là tứ giác nội tiếp.

23 tháng 9 2019

Ta có: ∆ABD ~ ∆ACE( g.g) =>  A D A B = A E A C

=>  S A D E S A B C = A E A C 2

Mà trong ∆ACE có cosA =  A E A C

=>  S A D E S A B C = cos A 2

=>  S A D E = S A B C . cos 2 A

30 tháng 9 2021

Tam giác ABD vuông tại D có \(\cos\widehat{A}=\cos60^0=\dfrac{AD}{AB}=\dfrac{1}{2}\)

Tam giác AEC vuông tại E có \(\cos\widehat{A}=\cos60^0=\dfrac{AE}{AC}=\dfrac{1}{2}\)

Ta có \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\\\widehat{A}.chung\end{matrix}\right.\Rightarrow\Delta ADE\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{1}{2}\\ \Rightarrow2DE=BC\)

30 tháng 9 2021

Bạn tự vẽ hình

Đặt \(AB=x\)

Xét \(\Delta DAB\) vuông tại D, ta có:

\(\cos A=\dfrac{AD}{AB}\) (tỉ số lượng giác)

\(\Rightarrow AD=AB.\cos A=x.\cos60^o=0,5x\)

Xét \(\Delta ADB\) và \(\Delta AEC\), ta có:

\(\left\{{}\begin{matrix}\widehat{A}chung\\\widehat{ABD}=\widehat{ACE\left(2gocphunhau\right)}\end{matrix}\right.\) 
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g.g\right)\)

Xét \(\Delta ABC\) và \(\Delta ADE\), ta có:

\(\left\{{}\begin{matrix}\widehat{A}chung\\\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(\Delta ABD\sim\Delta ADE\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\sim\Delta ADE\left(c.g.c\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DE}\\ \Rightarrow\dfrac{x}{0,5x}=\dfrac{BC}{DE}\\ \Rightarrow BC=\dfrac{DE.x}{0,5x}=2DE\)

 

 

a: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

mà góc A chung

nên ΔAED đồng dạng với ΔABC

b: góc xAC=góc ABC

góc ABC=góc ADE

=>góc xAC=góc ADE

=>Ax//DE