Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác BCDE có:
góc BEC = 90 độ
góc BDC = 90 độ
=>góc BEC=BDC
=>tứ giác BCDE nt
xét tứ giác ADHE có:
góc AEH = 90 độ
góc ADH=90 độ
=>AEH+ADH=180
=>tứ giác ADHE nt
b, vì tứ giác EDCB nt(cmt)
=>góc AED=ACB
xet tam giác AED và ACB có:
góc EAD chung
góc AED=ACB
=>2 tam giác này đồng dạng vs nhau
=>AE/AC=AD/AB
=>AD.AC=AE.AB
C, ta có :góc xAB=ACB
mak góc góc ACB=AED(cmt)
=>góc xAB=AED
=>Ax//ED
b) Xét tứ giác BEDC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD
Có thể giải như sau:
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2
Dễ tính được BC = RV3 => ED = RV3/2
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD)
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)
p/s:tham khảo
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
mà góc A chung
nên ΔAED đồng dạng với ΔABC
b: góc xAC=góc ABC
góc ABC=góc ADE
=>góc xAC=góc ADE
=>Ax//DE
a: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C
\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C
Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)
Ta có: BEDC là tứ giác nội tiếp
=>\(\widehat{DEC}=\widehat{DBC}\)
=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DE//D'E'
Kẻ tiếp tuyến Ax của (O')
=>Ax\(\perp\)OA tại A
Xét (O) có
\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{xAB}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)
nên \(\widehat{xAB}=\widehat{AED}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//ED
Ta có: Ax//ED
OA\(\perp\)Ax
Do đó: OA\(\perp\)ED
c: Xét (O) có
ΔABA' nội tiếp
A'A là đường kính
Do đó: ΔABA' vuông tại B
=>AB\(\perp\)BA'
Xét (O) có
ΔACA' nội tiếp
A'A là đường kính
Do đó: ΔACA' vuông tại C
=>AC\(\perp\)CA'
Ta có: AC\(\perp\)CA'
BH\(\perp\)AC
Do đó: BH//A'C
Ta có: AB\(\perp\)BA'
CH\(\perp\)AB
Do đó: CH//BA'
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
=>BC cắt HA' tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HA'
=>H,I,A' thẳng hàng
1:
a: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
c: BEDC nội tiếp
=>góc EBD=góc ECD
d: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC