Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)
Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)
Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)
b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\); \(S_{CEF}=S_{ABC}.cos^2C\)
Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)
Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)
Chúc em học tốt :)))
\(\Leftrightarrow\frac{S_{HIK}}{S_{ABC}}=1-\cos^2A-\cos^2B-\cos^2C\)
-Ta có: tam giác AIB vuông tại I \(\Rightarrow\cos A=\frac{AI}{AB}\)
Tam giác ACK vuông tại K \(\Rightarrow\cos A=\frac{AK}{AC}\)
\(\Rightarrow\cos^2A=\frac{AI}{AB}.\frac{AK}{AC}=\frac{\frac{1}{2}AI.AK}{\frac{1}{2}AB.AC}=\frac{\frac{1}{2}AI.AK.\cos A}{\frac{1}{2}AB.AC.\cos A}=\frac{S_{AKI}}{S_{ABC}}\)
Tương tự: \(\cos^2B=\frac{S_{BHK}}{S_{ABC}};\text{ }\cos^2C=\frac{S_{CIH}}{S_{ABC}}\)
\(\Rightarrow1-\cos^2A-\cos^2B-\cos^2C=\frac{S_{ABC}-S_{AKI}-S_{BHK}-S_{CIH}}{S_{ABC}}=\frac{S_{HIK}}{S_{ABC}}\text{ (đpcm)}\)
a)
Ta có:
Tam giác AKC vuông tại K \(\Rightarrow sinA=\frac{KC}{AC}\)
\(VT=S_{ABC}=\frac{1}{2}.AB.CK=\frac{1}{2}.AB.\left(AC.\frac{KC}{AC}\right)=\frac{1}{2}.AB.AC.sinA=VP\)(đpcm)
b)
\(\left(1-cos^2A-cos^2B-cos^2C\right).S_{ABC}\)
\(=\left(1-\frac{KC^2}{AC^2}-\frac{BI^2}{AB^2}-\frac{AH^2}{BC^2}\right).S_{ABC}\)
\(=\left[\left(1-\frac{AH^2}{BC^2}\right)-\left(\frac{KC^2}{AC^2}+\frac{BI^2}{AB^2}\right)\right].S_{ABC}\)
\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{AB^2.KC^2-AC^2.BI^2}{AB^2.AC^2}\right).S_{ABC}\)
\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{S^2_{ABC}-S^2_{ABC}}{AB^2.AC^2}\right).S_{ABC}\)
\(=\left(1-\frac{AH^2}{BC^2}\right).S_{ABC}=S_{ABC}-\frac{AH^2}{BC^2}.S_{ABC}\)
a)
\(\Delta EAB\) ~ \(\Delta FAC\) (g - g)
\(\Rightarrow\dfrac{EA}{FA}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\Rightarrow\Delta AEF\) ~ \(\Delta ABC\)
\(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{AE^2}{AB^2}=\cos^2A\)
\(\Rightarrow S_{AEF}=\cos^2A\left(S_{ABC}=1\right)\) (1)
Chứng minh tương tự, ta có: \(S_{BFD}=\cos^2B\) (2) và \(S_{CDE}=\cos^2C\) (3)
Cộng theo vế của (1) , (2) và (3) => đpcm
b)
\(S_{DEF}=S_{ABC}-\left(S_{AEF}+S_{BFD}+S_{CDE}\right)\text{ }\)
\(=1-\cos^2A-\cos^2B-\cos^2C\)
\(=\sin^2A-\cos^2B-\cos^2C\) (đpcm)
Đề bài của em bị sai
Hai tam giác BHD và BKC đồng dạng do chung góc \(\widehat{KBC}\) và \(\widehat{BDH}=\widehat{BCK}\) (cùng bằng \(\widehat{BAH}\))
Do đó tỉ số đồng dạng 2 tam giác là \(k=\dfrac{BD}{BC}\)
\(\Rightarrow\dfrac{S_{BDH}}{S_{BKC}}=k^2=\dfrac{BD^2}{BC^2}\)
Nếu đề bài đúng thì đồng nghĩa ta phải chứng minh:
\(\dfrac{BD^2}{BC^2}=\dfrac{cos^2\widehat{ABD}}{4}=\dfrac{\left(\dfrac{BD}{AB}\right)^2}{4}=\dfrac{BD^2}{4AB^2}\)
\(\Rightarrow BC^2=4AB^2\) nhưng điều này rõ ràng ko đúng (vì đề bài ko hề cho BC=2AB)
a:
Xét tứ giác BLKC có góc BLC=góc BKC=90 độ
nên BLKC là tứ giác nội tiếp
=>góc ALK=góc ACB
=>ΔALK đồng dạng với ΔACB
=>AL/AC=AK/AB=LK/BC
\(\left(\dfrac{AK}{AB}\right)^2=\dfrac{AK}{AB}\cdot\dfrac{AK}{AB}=\dfrac{AL}{AC}\cdot\dfrac{BK}{BC}\)
b: \(\dfrac{S_{AKL}}{S_{ABC}}=\left(\dfrac{AK}{AB}\right)^2=\dfrac{AL\cdot BK}{AC\cdot BC}\)