K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2022

a. xét tam giác vuông AHB và tam giác vuông AHC

\(AB>AH\) ( BĐT tam giác )

\(AC>AH\) ( BĐT tam giác )

\(\Rightarrow AB+AC>2.AH\) hay \(AH< \dfrac{AB+AC}{2}\)

b.xét tam giác ABM và tam giác ACM, có:

AB = AC ( ABC cân )

góc BAM = góc CAM ( ABC cân )

AM : cạnh chung 

Vậy tam giác ABM = tam giác ACM ( c.g.c )

=> MB = MC ( 2 cạnh tương ứng )

18 tháng 2 2022

a. -Vì AH⊥BC tại H (gt).

Nên AH là đường vuông góc, AB, AC là các đường xiên.

\(\Rightarrow AH< AB;AH< AC\) (quan hệ giữa đường vuông góc và đường xiên).

\(\Rightarrow AH+AH< AB+AC\)

\(\Rightarrow2AH< AB+AC\)

\(\Rightarrow AH< \dfrac{AB+AC}{2}\)

b. -Có: AH⊥BC tại H (gt).

Nên BH, CH lần lượt là hình chiếu của đường xiên AB,AC lên BC.

Mà \(AB< AC\) (gt)

\(\Rightarrow BH< CH\) (quan hệ giữa đường xiên và hình chiếu).

-Có: MH⊥BC tại H (gt).

Nên BH, CH lần lượt là hình chiếu của đường xiên MB,MC lên BC.

Mà \(BH< CH\left(cmt\right)\)

\(\Rightarrow MB< MC\)(quan hệ giữa đường xiên và hình chiếu).

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có 

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

18 tháng 2 2016

a)Vì AB=AC => tam giác ABC cân tại A

Xét tam giác ABH và tam giác ACH:

ta có AB=AC

        B=C(tam giác abc cân tại A)

        AH chung

   =>tam giác ABH=tam giác ACH(c.g.c)

   =>HB=HC(2 cạnh tương ứng)

b)Vì tam giác ABH=tam giác ACH

  =>A1=A2  

  =>AH là tia phân giác BAC

còn lại bạn tự làm nha mình chịu rồi:)

a)

Tam giác BEC vuông tại E có K là trung điểm BC nên BK = EK

Tam giác BDC vuông tại D có K là trung điểm BC nên BK = DK

Suy ra tam giác EKD cân tại K, I là trung điểm của ED, do đó KI là đường cao

Vậy KI vuông góc với ED

b)

Tứ giác MNCB là hình thang do do CN//BM (vì cùng vuông góc với ED)

Suy ra IM = IN

Có: ⎧⎩⎨⎪⎪⎪⎪EM=IM−IEDN=IN−IDIM=INIE=ID

⇒EM=DN

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O