K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc BAM chung

=>ΔABM đồng dạng với ΔACN

=>AM/AN=AB/AC

=>AM*AC=AN*AB và AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC

góc MAN chung

=>ΔAMN đòng dạng với ΔABC

c: ΔAMN đồng dạng với ΔABC

=>S AMN/S ABC=(AM/AB)^2=(cos60)^2=1/4

=>S ABC=4*S AMN

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng với ΔABC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc ADE=góc ABC

7 tháng 4 2021

undefinedundefined

a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{BAM}\) chung

Do đó: ΔAMB\(\sim\)ΔANC(g-g)

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

\(\widehat{NAM}\) chung

Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)

16 tháng 12 2023

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

16 tháng 12 2023

cảm ơn ạ

5 tháng 5 2023

hộ e cái mọi người ơi

 

a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE; AD/AB=AE/AC

c: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

=>góc AED=góc ACB

a: XétΔAMB vuông tại M và ΔANC vuông tại N có

góc A chung

Do đó: ΔAMB\(\sim\)ΔANC

b: Ta có: ΔANH vuông tại N

mà NI là đường trung tuyến

nên NI=AH/2(1)

Ta có: ΔAMH vuông tại M

mà MI là đường trung tuyến

nên MI=AH/2(2)

Từ (1) và (2) suy ra NI=MI(3)

Ta có: ΔNBC vuông tại N

mà NK là đường trung tuyến

nên NK=BC/2(4)

Ta có: ΔMBC vuông tại M

mà MK là đường trung tuyến

nên MK=BC/2(5)

Từ (4), (5) suy ra NK=MK(6)

Từ (3) và (6) suy ra IK là đường trung trực của MN

a: Xet ΔAMB vuông tại M và ΔANC vuông tại N có

góc MAB chung

=>ΔAMB đồng dạng với ΔANC
=>AM/AN=AB/AC

=>AM*AC=AN*AB; AM/AB=AN/AC

b: Xet ΔAMN và ΔABC co

AM/AB=AN/AC

góc A chung

=>ΔAMN đồng dạng với ΔABC

c: góc MPH=góc ACN

góc NPH=góc ABM

góc ACN=góc ABM

=>góc MPH=góc NPH

=>PH là phân giác củagóc MPN