K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì BC đi qua trung điểm HM 

=>M là đối xứng với H qua BC 

=> BC là trung trực HM

=> BM = BH 

=> CM = CH 

Xét ∆BHD và ∆BMC ta có : 

BC chung 

BH = BM 

CH = CM 

=> ∆BHD = ∆BMC (c.c.c)

b)  Gọi giao điểm của BH và AC là D 

Giao điểm của CH và AB là E 

Vì H là trực tâm ∆ABC 

=> CE\(\perp\)AB 

=> BD \(\perp\)AC 

Xét tứ giác AEHD ta có : 

EAD + ADH + DHE + AEH = 360° 

=> EHD = 360° - ( 70° + 90° + 90° ) = 110° 

Vì EHD = BHC = 110° (đối đỉnh )

Vì ∆BHC = ∆BMC (cmt)

=> BHC = BMC = 110° 

a: Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

a: Ta có: M và H đối xứng nhau qua BC

nên BC là đường trung trực của MH

Suy ra: BM=BH; CM=CH

Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

a: Ta có: M và H đối xứng nhau qua BC

nên BC là đường trung trực của MH

Suy ra: BH=BM và CH=CM

Xét ΔBHC và ΔBMC có 

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

28 tháng 11 2021

 

a) Ta có:

 

K đối xứng với H qua BC

⇒ BC là trung trực của HK

⇒ BH=BK; CH=CK

Xét ΔBHC và ΔBKC có:

BH=BK (cmt)

CH=CK (cmt)

BC: cạnh chung

Do đó ΔBHC = ΔBKC(c.c.c)

b) Ta có:

ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)

ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)

⇒ ˆBHC = ˆBHK + ˆCHK

= ˆBAH + ˆABH + ˆCAH + ˆACH

= ˆBAC + ˆABH + ˆACH

Ta lại có:

ˆBAC+ˆABH = 90o (BH⊥AC)

ˆBAC+ˆACH = 90o (CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o

⇒ˆABH+ ˆACH = 180o− 2ˆBAC

Do đó:

ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o

Mặt khác:

ˆBHC = ˆBKC (ΔBHC = ΔBKC)

⇒ˆBKC=110

23 tháng 8 2018

Ôn tập toán 8

a. Vì M đối xứng với H qua trục BC

⇒ BC là đường trung trực của HM

⇒ BH = BM ( tính chất đường trung trực)

CH = CM ( tính chất đường trung trực)

Suy ra: ∆ BHC = ∆ BMC (c.c.c)

b. Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E

H là trực tâm của ∆ ABC

⇒ BD ⊥ AC, CE ⊥ AB

Xét tứ giác ADHE ta có:

\(\widehat{DHE}=360^0-\left(\widehat{A}+\widehat{H}+\widehat{E}\right)\)

\(=360^0-\left(60^0+90^0+90^0\right)=120^0\)

\(\widehat{BHC}=\widehat{DHE}\) (đối đỉnh)

∆ BHC = ∆ BMC (chứng minh trên)

\(\Rightarrow\widehat{BMC}=\widehat{BHC}\)

Suy ra:\(\widehat{BMC}=\widehat{DHE}=120^0\)

9 tháng 10 2020

bn ơi phải là góc DHE=360 độ - (góc A +góc D+ gócE)

2 tháng 10 2015

a) Ta có: M đối xứng với H qua BC

Suy ra BC là đường trung trực của đoạn thẳng BC

mà B thuộc đường trung tực của đoạn thẳng BC suy ra BM=BH

và C thuộc đường trung trực của đoạn thẳng BC suy ra CM=CH

Xét tam giác BMC và tam giác BHC có: BM=BH (chứng minh trên), MC=MH(chứng minh trên), BC chung

Suy ra tam giác BMC=BHC 

b) Trong tam giác ABC có AM là đường trung trực đồng thời là đường cao của cạnh BC suy ra tam giác ABC cân

Suy ra góc ABC = góc BCA=( 180o - 60o ) : 2= 60o

mà BM và CM là đường phân giác( tam giác ABC cân) suy ra góc MBC = góc MCB= 60 : 2=30o

Suy ra góc BMC= 180- 30o + 30= 120o

mà góc BMC= góc BHC suy ra góc BHC= 120o

 

 

19 tháng 9 2016

Bạn có thể giải thích câu b rõ hơn dược không Lê Thị Hồng Hạnh!!!!!!!!!! do mình chua thấy tam giác ABC cân tai đâu....bạn giải thích dc hk@@

a) Vì M đối xứng với H qua BC nên BC là đường trung trực của MH

Suy ra: BH=BM và CH=CM

Xét ΔBHC và ΔBMC có 

BH=BM(cmt)

CH=CM(cmt)

BC chung

Do đó: ΔBHC=ΔBMC(c-c-c)