K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔANI và ΔCNM có 

AN=CN(N là trung điểm của AC)

\(\widehat{ANI}=\widehat{CNM}\)(hai góc đối đỉnh)

NI=NM(gt)

Do đó: ΔANI=ΔCNM(c-g-c)

b) Ta có: ΔANI=ΔCNM(cmt)

nên AI=MC(hai cạnh tương ứng)

Ta có: ΔANI=ΔCNM(cmt)

nên \(\widehat{IAN}=\widehat{MCN}\)(hai góc tương ứng)

mà \(\widehat{IAN}\) và \(\widehat{MCN}\) là hai góc ở vị trí so le trong

nên MC//AI(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔABC có

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

hay MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)

d) Xét ΔANE và ΔCNF có 

NA=NC(N là trung điểm của AC)

\(\widehat{EAN}=\widehat{FCN}\)(cmt)

AE=CF(gt)

Do đó: ΔANE=ΔCNF(c-g-c)

hay \(\widehat{ANE}=\widehat{CNF}\)(hai góc tương ứng)

mà \(\widehat{ANE}+\widehat{ENC}=180^0\)(hai góc kề bù)

nên \(\widehat{CNF}+\widehat{CNE}=180^0\)

\(\Leftrightarrow\widehat{FNE}=180^0\)

hay E,N,F thẳng hàng(đpcm)

4 tháng 1 2021

Thanks bn nhavui

a: Xét tứ giác ABCQ có 

N là trung điểm của AC

N là trung điểm của BQ

Do đó: ABCQ là hình bình hành

Suy ra: AQ//BC và AQ=BC

Xét tứ giác ACBP có

M là trung điểm của AB

M là trung điểm của CP

Do đó: ACBP là hình bình hành

Suy ra: AP//BC và AP=BC

Ta có: AQ//BC

AP//BC

mà AQ,AP có điểm chung là A

nên Q,A,P thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN=PQ/4

=>PQ=4MN

19 tháng 6 2020

tự kẻ hình nha

a) xét tam giác AMN và tam gáic CEN có

AN=NC(gt)

MN=NE(gt)

ANM=CNE( đối đỉnh)

=> tam giác AMN= tam giác CEN(cgc)

=> AM=CE(hai cạnh tương ứng) mà AM=MB=> MB=CE

=> CEN=AMN(hai góc tương ứng)

mà CEN so le trong với AMN mà A,M,B thẳng hàng=> MB//CE

c) từ MB//CE=> BMC=MCE( so le trong)

xét tam giác BMC và tam gíac ECM có

MC chung

BMC=MCE(cmt)

MB=CE(cmt)

=> tam gíac BMC= tam giác ECM(ccg)

d) từ tam giác BMC= tam giác CEM=> BCM=EMC( hai góc tương ứng), ME=BC( hai cạnh tương ứng)

mà BCM so le trong với EMC=> MN//BC

vì MN=NE mà ME=BC(cmt)

=> BC=2MN=> MN=1/2BC

24 tháng 12 2017

a) Xét tam giác AMN và tam giác BMC, ta có:
     MA = MB (M là trung điểm của AB)
     góc NMA = góc BMC (đối đỉnh)
     MN = MC (gt)
   => tam giác AMN = tam giác BMC
b) Xét tứ giác ACBN, ta có:
     M là trung điểm của AB (gt)
     M là trung điểm của CN (MC = MN)
   => Tứ giác ACBN là hình bình hành
   => AN // BC
c) Do tứ giác ACBN là hình bình hành => AN // BC và AN = BC => góc ANC = góc BCN và AN = BC
    Xét tam giác NAC và tam giác CBN, ta có:
     AN = BC (cmt)
     góc ANC = góc BCN (cmt)
     CN chung
    => tam giác NAC = tam giác CBN

25 tháng 12 2017

Vẽ hình đi bạn.

13 tháng 4 2021

Khiếp, bạn gõ lại cẩn thận từng chữ được không ạ?

a) Sửa đề: ΔAMB=ΔDMC

Xét ΔAMB và ΔDMC có 

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

26 tháng 2 2020

a) Xét tam giác ABN và tam giác ACM có:

\(\widehat{A}\):góc chung

AM=AN(gt)

AC=AB(tam giác ABC cân)

Suy ra \(\Delta ABN=\Delta ACM\)(c.g.c)

b)Xét tam giác AMN. Do AM=AN(gt) nên tam giác này là tam giác cân

Suy ra \(\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\)(1)

Lại xét tam giác ABC cân nên:

\(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2), suy ra:

\(\widehat{M}=\widehat{B}\) và \(\widehat{N}=\widehat{C}\)

Mà các cặp góc này đều có các góc ở vị trí so le trong nên MN//BC(đpcm)

1 tháng 3 2023

câu xét tam giác ABN và ACM của bạn sai rùi ạ. cạnh AB đã có AM rồi ạ (M thuộc AB)

4 tháng 12 2023

loading...  

a) Xét ∆AMN và ∆CQN có:

AN = NC (do N là trung điểm của AC)

∠ANM = ∠CNQ (đối đỉnh)

NM = NQ (gt)

⇒ ∆AMN = ∆CQN (c-g-c)

b) Do ∆AMN = ∆CQN (cmt)

⇒ ∠MAN = ∠NCQ (hai góc tương ứng)

Mà ∠MAN và ∠NCQ là hai góc so le trong

⇒ AM // CQ

⇒ MB // CQ

c) Do ∆AMN = ∆CQN (cmt)

⇒ AM = CQ (hai cạnh tương ứng)

Mà AM = MB (do M là trung điểm của AB)

⇒ MB = CQ

Do BM // CQ (cmt)

⇒ ∠BMC = ∠QCM (so le trong)

Xét ∆BMC và ∆QCM có:

BM = CQ (cmt)

∠BMC = ∠QCM (cmt)

CM là cạnh chung

⇒ ∆BMC = ∆QCM (c-g-c)

⇒ BC = MQ (hai cạnh tương ứng)

Do NM = NQ (gt)

⇒ MN = 1/2 MQ

Mà BC = MQ (cmt)

⇒ MN = 1/2 BC