Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔANI và ΔCNM có
AN=CN(N là trung điểm của AC)
\(\widehat{ANI}=\widehat{CNM}\)(hai góc đối đỉnh)
NI=NM(gt)
Do đó: ΔANI=ΔCNM(c-g-c)
b) Ta có: ΔANI=ΔCNM(cmt)
nên AI=MC(hai cạnh tương ứng)
Ta có: ΔANI=ΔCNM(cmt)
nên \(\widehat{IAN}=\widehat{MCN}\)(hai góc tương ứng)
mà \(\widehat{IAN}\) và \(\widehat{MCN}\) là hai góc ở vị trí so le trong
nên MC//AI(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)
d) Xét ΔANE và ΔCNF có
NA=NC(N là trung điểm của AC)
\(\widehat{EAN}=\widehat{FCN}\)(cmt)
AE=CF(gt)
Do đó: ΔANE=ΔCNF(c-g-c)
hay \(\widehat{ANE}=\widehat{CNF}\)(hai góc tương ứng)
mà \(\widehat{ANE}+\widehat{ENC}=180^0\)(hai góc kề bù)
nên \(\widehat{CNF}+\widehat{CNE}=180^0\)
\(\Leftrightarrow\widehat{FNE}=180^0\)
hay E,N,F thẳng hàng(đpcm)
bài 1
gọi số tiền lãi của mỗi người là a,b,c (a,b,c > 0)
Ta có \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\\a+b+c=36\end{cases}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{36}{10}=\frac{18}{5}\)
Do đó \(a=\frac{18}{5}.2=\frac{36}{5}=7,2\)(triệu đồng)
\(b=\frac{18}{5}.3=10,8\)(triệu đồng)
\(c=\frac{18}{5}.5=18\)(triệu đồng)
Vậy .........
a,b: Xét tứ giác AECB có
N là trung điểm chung của AC,EB
nên AECB là hình bình hành
=>AE//BC và AE=BC
c: Xét tứ giác AFBC có
M là trung điểm chung của AB và FC
nên AFBC là hình bình hành
=>AF//BC
=>F,A,E thẳng hàng
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
Ta có hình vẽ:
a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)
Xét Δ AMK và Δ BMC có:
AM = BM (cmt)
AMK = BMC (đối đỉnh)
MK = MC (gt)
Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)
b) Vì N là trung điểm của AC nên AN = NC
Xét Δ ANI và Δ CNB có:
AN = NC (cmt)
ANI = CNB (đối đỉnh)
NI = NB (gt)
Do đó, Δ ANI = Δ CNB (c.g.c)
=> AI = BC (2 cạnh tương ứng) (đpcm)
c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)
Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)
Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)
Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)
Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)
Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)
Mà AI = BC (câu b) => AK = AI (4)
Từ (3) và (4) => A là trung điểm của IK (đpcm)