K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

Ta có :

\(\overrightarrow{BP}+\overrightarrow{AN}+\overrightarrow{CM}=\overrightarrow{BC}+\overrightarrow{CP}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{CA}+\overrightarrow{AM}=\overrightarrow{CP}+\overrightarrow{BN}+\overrightarrow{AM}\)\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{BC}+\dfrac{1}{3}\overrightarrow{CA}\)

\(=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\right)\)

\(=\dfrac{1}{3}\overrightarrow{0}\)

\(=\overrightarrow{0}\)

\(\RightarrowĐPCM\)

28 tháng 7 2019

\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}\)

\(\overrightarrow{BP}=\overrightarrow{BC}+\overrightarrow{CP}\)

\(\overrightarrow{CM}=\overrightarrow{CA}+\overrightarrow{AM}\)

Cộng vế vs vế:

\(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{BN}+\overrightarrow{CP}+\overrightarrow{AM}\)

\(=\overrightarrow{AC}+\overrightarrow{CA}+\frac{1}{3}\left(\overrightarrow{BC}+\overrightarrow{CA}+\overrightarrow{AB}\right)\)

\(=0+\frac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{AB}\right)=0\) (đpcm)

28 tháng 7 2019

xin slot để làm

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:

\(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}\)

\(=\overrightarrow{MB}+\overrightarrow{BC}+2\overrightarrow{BC}=\overrightarrow{MB}+3\overrightarrow{BC}\)

\(=\overrightarrow{MA}+\overrightarrow{AB}+3(\overrightarrow{BA}+\overrightarrow{AC})\)

\(=-\overrightarrow{AM}+\overrightarrow{AB}-3\overrightarrow{AB}+3\overrightarrow{AC}\)

\(=-\frac{1}{3}\overrightarrow{AB}+\overrightarrow {AB}-3\overrightarrow{AB}+3\overrightarrow{AC}\)

\(=\frac{-7}{3}\overrightarrow{AB}+3\overrightarrow{AC}\)

Ta có đpcm.

26 tháng 12 2018

Mình sửa lại câu hỏi: CM \(\overrightarrow{MN}=-\dfrac{7}{3}\overrightarrow{AB}+3\overrightarrow{AC}\)

30 tháng 10 2021

undefined

7 tháng 10 2019

\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}}{2}+\frac{\overrightarrow{AC}}{2}=\overrightarrow{AM}+\overrightarrow{AP}\)

\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\overrightarrow{BP}=\frac{\overrightarrow{BA}+\overrightarrow{BC}}{2}\)

\(\overrightarrow{CM}=\frac{\overrightarrow{CB}+\overrightarrow{CA}}{2}\)

\(\Rightarrow\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\overrightarrow{0}\)

NV
23 tháng 9 2020

a/ \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\)

\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b/

Do MN là đường trung bình tam giác ABC \(\Rightarrow\overrightarrow{MN}=\frac{1}{2}\overrightarrow{AC}\)

\(\overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{MN}=\overrightarrow{AM}+\frac{1}{2}\overrightarrow{AC}=\overrightarrow{AM}+\overrightarrow{AP}\)

c/

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}+\frac{1}{2}\overrightarrow{CA}=\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{CA}=\overrightarrow{0}\)

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)