Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}\)
\(=\overrightarrow{MB}+\overrightarrow{BC}+2\overrightarrow{BC}=\overrightarrow{MB}+3\overrightarrow{BC}\)
\(=\overrightarrow{MA}+\overrightarrow{AB}+3(\overrightarrow{BA}+\overrightarrow{AC})\)
\(=-\overrightarrow{AM}+\overrightarrow{AB}-3\overrightarrow{AB}+3\overrightarrow{AC}\)
\(=-\frac{1}{3}\overrightarrow{AB}+\overrightarrow {AB}-3\overrightarrow{AB}+3\overrightarrow{AC}\)
\(=\frac{-7}{3}\overrightarrow{AB}+3\overrightarrow{AC}\)
Ta có đpcm.
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)
\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)
\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
Có vẻ không đúng.
Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow M\equiv B\) (Vô lí)