Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHDK có
\(\widehat{AHD}=\widehat{AKD}=\widehat{KAH}=90^0\)
Do đó: AHDK là hình chữ nhật
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Mình vẽ hình hơi xâu, bạn thông cảm nhé!
a) Xét từ giác ABMC có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)
+ DA = DM (gt)
+ DB = DM(gt)
suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật
Các câu còn lại bạn đầu có thể giải theo cách trên nhé!
( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)
a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.
Khi đó hai đường chéo bằng nhau nên BM = HK.
b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.
Vậy thì K là trung điểm BC.
Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.
Lại có MN vuông góc BC nên BMCN là hình thoi.
Dễ thấy rằng MK = AB/2 hay MN = AB.
Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.
Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.
c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.
Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.
Vậy nên BM giao AM tại trung điểm mỗi đoạn.
Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.
d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.
Ta có: do KM // AB, áp dụng Talet:
\(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)
\(\Rightarrow IM=2OM\)
Áp dụng Talet cho tam giác AND và ADC ta có:
\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)
bạn ktra lại đề nhé.
(hình tự vẽ)
\(\Delta ABC\) có: KA = KC; DB = DC
=> KD là đường trung bình \(\Delta ABC\)
=> KD // AB hay KD // AH (1)
KD = AB/2
Lại có: AH = AB/2
=> KD = AH (2)
Từ (1) và (2) => AHDK là hình bình hành