K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

B C A M H K N D O I

a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.

Khi đó hai đường chéo bằng nhau nên BM = HK.

b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.

Vậy thì K là trung điểm BC.

Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.

Lại có MN vuông góc BC nên BMCN là hình thoi.

Dễ thấy rằng MK = AB/2 hay MN = AB.

Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.

Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.

c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.

Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.

Vậy nên BM giao AM tại trung điểm mỗi đoạn.

Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.

d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.

Ta có:  do KM // AB, áp dụng Talet:

 \(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)

\(\Rightarrow IM=2OM\)

Áp dụng Talet cho tam giác AND và ADC ta có:

\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)

a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)

nên AMIN là hình chữ nhật

b: IN=3cm

nên AM=3cm

IM=4cm

nên AN=4cm

Xét ΔABC có

I là trung điểm của BC

IM//AC

Do đó: M là trung điểm của AB

=>AB=6cm

Xét ΔABC có

I là trung điểm của BC

IN//AB

Do đó: N là trung điểm của AC

hay AC=8cm

\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: Xét tứ giác ADCI có 

N là trung điểm của AC

N là trung điểm của DI

Do đó: ADCI là hình bình hành

mà IA=IC

nên ADCI là hình thoi

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

27 tháng 12 2021

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)

Do đó: ANMP là hình chữ nhật

a: D đối xứng M qua AB

nên AD=AM; BD=BM và DM vuông góc với AB

Xét tứ giác AIDE có

góc AID=góc AED=góc EAI=90 độ

Do đó: AIDE là hình chữ nhật

b: AD=AM

BD=BM

mà AD=BD

nên AD=AM=BD=BM

=>ADBM là hình thoi

c: AI=AB/2=3cm

AE=AC/2=4,5cm

SAIDE=3*4,5=13,5cm2

2 tháng 1 2023

Kẻ hình nữa đc ko ạ 

9 tháng 1 2018

Chỗ mình kiểm tra học kì có câu này mà bây giờ bắt làm lại để nộp mà k biết làm