K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔAHB vuông tại H

mà HD là đường trung tuyến ứng với cạnh huyền AB

nên HD=AD=BD

Ta có: ΔAHC vuông tại H

mà HE là đường trung tuyến ứng với cạnh huyền AC

nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)

Ta có: HD=AD

nên D nằm trên đường trung trực của AH(1)

Ta có: HE=AE

nên E nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra DE là đường trung trực của AH

b) Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC

hay DE//HF

Xét ΔABC có

D là trung điểm của AB

F là trung điểm của BC

Do đó: DF là đường trung bình của ΔABC

Suy ra: \(DF=\dfrac{AC}{2}\)(4)

Từ (3) và (4) suy ra DF=HE

Xét tứ giác DEFH có DE//HF(cmt)

nên DEFH là hình thang

mà DF=HE(cmt)

nên DEFH là hình thang cân

16 tháng 11 2021

Đừng có hỏi nữa 

25 tháng 10 2017

A B C H D E F

a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF

=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.

b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD

=> Tam giác DBH cân tại D.

c) Điểm G ở đâu hả bạn?

23 tháng 10 2017

a. Xét ∆AHB vuông tại H có HM là đường 

đường trung tuyến ( gt ) nên HM =

2AB( 1 ) 

Trong ∆ABC có N là trung điểm của AC ( gt ) O

và K là trung điểm của BC ( gt ) nên NK là 

đường trung bình của ∆ABC → NK = 2AB(  2 ) B H K C

Từ ( 1 ) & ( 2 ) → HM = NK I

b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )

+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là 

đường trung bình của ∆ABC → MK = AC ( 4)

Từ ( 3 ) & ( 4 ) → HN = 2MK (a)

+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là 

đường trung bình của ∆ABC → MN // BC hay MN // KH 

→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.