K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HD là đường cao

nên \(AD\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)

hay AE/AC=AD/AB

Xét ΔAED vuông tại A và ΔACB vuông tại A có

AE/AC=AD/AB

Do đo ΔAED đồng dạng với ΔACB

b: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{40\cdot100}{2}=100\cdot20=2000\left(cm^2\right)\)

DE=AH=40cm

Ta có: ΔAED\(\sim\)ΔACB

nên \(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{DE}{CB}\right)^2=\left(\dfrac{40}{100}\right)^2=\dfrac{4}{25}\)

hay \(S_{AED}=320\left(cm^2\right)\)

6 tháng 5 2018

A B C H D E

6 tháng 5 2018

ABEH là hình chữ nhật ( có ba góc vuông)

\(\widehat{\Rightarrow AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ACB}\)(cùng phụ với góc DHC)

\(\Rightarrow\Delta ADE\infty\Delta ABC\left(g.g\right)\)

24 tháng 4 2016

vẽ hình đi bạn

3 tháng 3 2016

Sade=320

Sadc=800

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC