K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Dựa theo quan giữa góc và cạnh đối diện, bạn tự giải nha !

28 tháng 3 2018

Gửi le thi hong van mấy ảnh này cho đỡ căng thẳng nha !!! Mình tự làm đấybanh

Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7

Gọi D là điểm đối xứng với A qua M

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hìnhbình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

=>AM=1/2BC

24 tháng 10 2017

B1

Áp dụng định lý Pytago vào các tam giác vuông ta được:

PC^2=AP^2+AC^2

BN^2=AB^2+AN^2

BC^2=AB^2+AC^2

Theo tính chất tam giác vuông ta được:

AM=\(\dfrac{1}{2}\)BC=>AM^2=\(\dfrac{1}{4}\)BC^2

Từ trên =>AM^2+BN^2+CP^2=

\(\dfrac{1}{4}\)BC^2+AB^2+\(\dfrac{\left(AC\right)^2}{4}\)+AC^2+\(\dfrac{\left(AB\right)^2}{4}\)=\(\dfrac{2\left(BC\right)^2}{4}\)+BC^2=\(\dfrac{3}{2}\)BC^2(đpcm)

\(\dfrac{1}{4}\)

A B C P M N

24 tháng 10 2017
  • ẦN MINH HOÀNG2GP
  • Izumiki AkikoKien NguTrần Thân Đồng
  • QuNguTrần Việt Linh
  • yễn HoànHuỳnh Thoại
  • g Đình Bảo
  • Nguyễn Hoàng Đình Bảo
  • Phương HÀ
  • Thanh Hằng
  • ốc Lộc
  • yen

Ta có: ΔMAB cân tại M

nên \(\widehat{MAB}=\widehat{B}\)

Ta có: ΔMAC cân tại M

nên \(\widehat{MAC}=\widehat{C}\)

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)

hay \(\widehat{BAC}=90^0\)

12 tháng 1 2018

A B C M 1 2

Dễ dàng chỉ ra được các kết luận trên nhờ quan hệ giữa góc và cạnh đối diện trong tam giác.

Ta có : 

a) AM = BC/2 = BM

Vậy tam giác ABM cân tại M. Vậy thì \(\widehat{B}=\widehat{A_1}\)

Tương tự \(\widehat{B}=\widehat{A_2}\Rightarrow\widehat{A}=\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)

Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=90^o\)

b) AM > BM thì \(\widehat{B}>\widehat{A_1};\widehat{C}>\widehat{A_2}\)

\(\Rightarrow\widehat{B}+\widehat{C}>\widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}< 90^o\)

c) AM < BM thì \(\widehat{B}< \widehat{A_1};\widehat{C}< \widehat{A_2}\)

\(\Rightarrow\widehat{B}+\widehat{C}< \widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}>90^o\)