Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D là điểm đối xứng với A qua M
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hìnhbình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
=>AM=1/2BC
B1
Áp dụng định lý Pytago vào các tam giác vuông ta được:
PC^2=AP^2+AC^2
BN^2=AB^2+AN^2
BC^2=AB^2+AC^2
Theo tính chất tam giác vuông ta được:
AM=\(\dfrac{1}{2}\)BC=>AM^2=\(\dfrac{1}{4}\)BC^2
Từ trên =>AM^2+BN^2+CP^2=
\(\dfrac{1}{4}\)BC^2+AB^2+\(\dfrac{\left(AC\right)^2}{4}\)+AC^2+\(\dfrac{\left(AB\right)^2}{4}\)=\(\dfrac{2\left(BC\right)^2}{4}\)+BC^2=\(\dfrac{3}{2}\)BC^2(đpcm)
\(\dfrac{1}{4}\)
Ta có: ΔMAB cân tại M
nên \(\widehat{MAB}=\widehat{B}\)
Ta có: ΔMAC cân tại M
nên \(\widehat{MAC}=\widehat{C}\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)
hay \(\widehat{BAC}=90^0\)
Dễ dàng chỉ ra được các kết luận trên nhờ quan hệ giữa góc và cạnh đối diện trong tam giác.
Ta có :
a) AM = BC/2 = BM
Vậy tam giác ABM cân tại M. Vậy thì \(\widehat{B}=\widehat{A_1}\)
Tương tự \(\widehat{B}=\widehat{A_2}\Rightarrow\widehat{A}=\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=90^o\)
b) AM > BM thì \(\widehat{B}>\widehat{A_1};\widehat{C}>\widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}>\widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}< 90^o\)
c) AM < BM thì \(\widehat{B}< \widehat{A_1};\widehat{C}< \widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}< \widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}>90^o\)
Dựa theo quan giữa góc và cạnh đối diện, bạn tự giải nha !
Gửi le thi hong van mấy ảnh này cho đỡ căng thẳng nha !!! Mình tự làm đấy