K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

A B C M E

a, Xét \(\Delta ABM\)\(\Delta CME\) có:

MA=ME(giả thiết)

\(\widehat{M_1}\) =\(\widehat{M_2}\)(đối đỉnh)

MB=MC(M là trung điểm của BC)

\(\Rightarrow\Delta ABM=\Delta ECM\left(c.g.c\right)\)

`# \text {DNamNguyenV}`

`a,`

Ta có: M là trung điểm của BC

`=> \text {MB = MC}`

Xét `\Delta ABM` và `\Delta ECM`:

`\text {MA = ME (gt)}`

\(\text{ }\widehat{\text{ AMB}}=\widehat{\text{EMC}}\left(\text{2 góc đối đỉnh}\right)\)

`\text {MB = MC}`

`=> \Delta ABM = \Delta ECM (c - g - c)`

`b,`

Vì `\Delta ABM = \Delta ECM (a)`

`=> \text {AB = CE (2 góc tương ứng)}`

loading...

13 tháng 12 2021

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

DO đó: ABEC là hình bình hành

Suy ra: AB//EC

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Lời giải:
a. Xét tam giác $ABM$ và $ECM$ có:

$BM=CM$ (do $M$ là trung điểm $BC$)

$AM=EM$ (gt)

$\widehat{AMB}+\widehat{EMC}$ (đối đỉnh) 

$\Rightarrow \triangle ABM=\triangle ECM$ (c.g.c)

b. 

Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{ECM}$

Mà hai góc này so le trong nên $AB\parallel CE$ 

c.

$AB\perp AC; AB\parallel CE$

$\Rightarrow AC\perp CE$ (đpcm)

a: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔAMB=ΔEMC

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABEC là hình chữ nhật

Suy ra: AB//EC

c: Ta có: ABEC là hình chữ nhật

nên EC\(\perp\)AC

22 tháng 3 2023

a) Xét tam giác AMB và tam giác AMC ta có:

AM chung

AB=AC (gt)

MB=MC (vì M là trung điểm của BC)

Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)

b) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc BAM=góc CAM (2 góc tương ứng)

Suy ra AM là tia phân giác của góc BAC (đpcm)

c) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc AMB=góc AMC(2 góc tương ứng)

Mà góc AMB+góc AMC=180 độ (2 góc kề bù)

Suy ra góc AMB=góc AMC=180 độ/2=90 độ

Suy ra AM vuông góc với BC tại M (đpcm)

Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)

 

a: Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

b: 

Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

c: Ta có: ΔABC cân tại A

=>\(\widehat{ABC}\) nhọn

=>\(\widehat{ABM}=180^0-\widehat{ABC}>90^0\)

Xét ΔABM có \(\widehat{ABM}>90^0\)

mà AM là cạnh đối diện của góc ABM

nên AM là cạnh lớn nhất trong ΔABM

=>AM>AB

mà AB=AC

nên AM>AC