Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
Xét tam giác ADE và EFC có:
DE = EF (giả thiết)
AE = EC (vì E là trung điểm AC)
AED = FED (đối đỉnh)
=> tam giác ADE = tam giác EFC (cạnh góc cạnh)
=> AD = FC (2 cạnh tương ứng)
=> AE = EC (2 cạnh tương ứng)
=> AC = DF
=> góc A = góc F (2 góc tương ứng)
Xét tam giác ADC và tam giác FCD có
CD: cạnh chung
AD = FC (câu a)
AC = DF (câu a)
=> tam giác ADC = tam giác FCD (cạnh cạnh cạnh)
Vậy tam giác ADC = tam giác FCD
(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
AE=EC(gt)
DE=EF(gt)
góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM
a: Xét tứ giác BDFC có
FD//BC
FD=BC
Do đó: BDFC là hình bình hành
Suy ra: DB=FC
a)
Xét \(\Delta AED\)và \(\Delta CEF\)
+ AE = CE(gt)
+ DE = EF(gt)
+ \(\widehat{AED}=\widehat{CEF}\)(đổi đỉnh)
\(\Delta AED=\Delta CEF\left(c.g.c\right)\)
b) Ta có CF = AD ( hai cạnh tương ứng)
Mà AD = BD => BD = CF
Ta lại có : \(\widehat{EAD}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên FC//AB
c) \(\Delta BDC=\Delta FCD\)(c.g.c)
+ Chung CD
+ \(\widehat{BDC}=\widehat{FCD}\)(so le trong)
+ BD = CF(cmt)
d) Từ c) ta có DE = BC
Mà DE = 2.EF=BC
=> EF=1/2 BC
Bạn tự vẽ hình nhé!
a) Ta có: AB là trung trực của ME => AE=AM (1)
Tương tự AC cũng là trung trự của MF => AF=AM (2)
(1)(2) => AE=AF
Chứng tỏ trung trực của EF đi qua A
b) Ta có: BE=BM (AB là trung trực của EM)
Tương tự CF=CM mà BM+MC=BC
=> BE+CF=BC
a) ˆIAC=ˆBAK (=140o)IAC^=BAK^ (=140o)
ΔIAC=ΔBAKΔIAC=ΔBAK (c.g.c) ⇒IC=BK⇒IC=BK.
b) Gọi D là giao điểm của AB và IC, gọi E là giao điểm của IC và BK.
Xét ΔAIDΔAID và ΔEBDΔEBD, ta có ˆAID=ˆEBDAID^=EBD^ (do ΔIAC=ΔBAK)ΔIAC=ΔBAK), (đối đỉnh) nên ˆIAD=ˆBEDIAD^=BED^.
Do ˆIAD=90oIAD^=90o nên ˆBED=90oBED^=90o. Vậy IC⊥BKIC ⊥ BK.