Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ANDM có
ND//AM
AN//DM
Do đó: ANDM là hình bình hành
mà \(\widehat{NAM}=90^0\)
nên ANDM là hình chữ nhật
hay AD=NM
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a: Xét ΔOAD và ΔOMK có
\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)
\(\widehat{AOD}=\widehat{MOK}\)
Do đó: ΔOAD đồng dạng với ΔOMK
=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)
=>\(OA\cdot OK=OM\cdot OD\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)
mà BD+CD=BC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)
=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)
c: ME//AD
=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)
KM//AD
=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)
AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)
=>AE=AK
Xét ΔCAD có EM//AD
nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)
=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)
mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)
nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)
=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)
=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)