K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

a) Vì H là điểm đối xứng của A qua M

=> M là trung điểm AH

Xét tứ giác ABHC có 

M là trung điểm BC (gt)

M là trung điểm AH (cmt)

=> ABHC là hình bình hành

12 tháng 11 2021

a: Xét tứ giác ABHC có 

M là trung điểm của BC

M là trung điểm của AH

Do đó: ABHC là hình bình hành

17 tháng 10 2021

a: Xét tứ giác BHCD có 

M là trung điểm của BC

M là trung điểm của HD

Do đó: BHCD là hình bình hành

19 tháng 7 2021

a/ Tứ giác ABCD có:
- AM=MD (gt)
- MB=MC (gt)
=> Tứ giác ABCD là hình bình hành
Do △ABC là tam giác cân suy ra AM vừa là trung tuyến vừa là đường cao hay AM⊥BC
=> ABCD là hình thoi (đpcm)

b/ Hình thoi ABCD (cmt) có AC//BD => CF//BD => AF//BD (1)
Mặt khác ta có: AD⊥BC ; BF⊥BC => AD//BF (2)
AF và BD cùng cắt AD và BF (3)
Từ (1), (2), (3):
Vậy tứ giác ADBF là hình bình hành (đpcm)

a) Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AD(A và D đối xứng với nhau qua M)

Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABDC có AB=AC(ΔABC cân tại A)

nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)

20 tháng 12 2021

Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

16 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành

\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)

Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)

Do đó AHCK là hình bình hành

Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao

Do đó \(AH\bot HC\)

Vậy AHCK là hình chữ nhật

\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK

Vậy H,M,K thẳng hàng

\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M

Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)

Do đó \(HK//AB\)

Mà \(HK\bot AC\) nên \(AC\bot AB\)

Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông

6 tháng 10 2020

a) Vì H' đối xứng với H qua BC nên BC là đường trung trực của HH' => BH = BH', CH = CH'

Xét ∆BHC và ∆BH'C có:

      BH = BH' (cmt)

      BC: cạnh chung

      HC = H'C (cmt)

Do đó ∆BHC = ∆BH'C (c.c.c)

b) Gọi T là giao điểm của HH' với BC

∆HH'K có T là trung điểm của HH' (gt) và HI = IK (gt) nên TI là đường trung bình của tam giác => HI // H'K hay BC // H'K

Dễ chứng minh: ∆HIB = ∆KIC (c.g.c) => ^HBI = ^KCI (hai góc tương ứng)

Mà ^HBI = ^H'BC (∆BHC = ∆BH'C) nên ^H'BC = ^KCI

Hình thang BH'KC có ^H'BC = ^KCI nên là hình thang cân (đpcm)

21 tháng 10 2021

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

Do đó: BHCD là hình bình hành