Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì H là điểm đối xứng của A qua M
=> M là trung điểm AH
Xét tứ giác ABHC có
M là trung điểm BC (gt)
M là trung điểm AH (cmt)
=> ABHC là hình bình hành
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=1/2BC
=>DE//BF và DE=BF
=>BDEF là hình bình hành
b: Xét tứ giác AICM có
E là trung điểm chung của AC và IM
góc AIC=90 độ
Do đó; AICM là hình chữ nhật
a) Xét tứ giác BHCK có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: BHCK là hình bình hành(cmt)
nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)
Ta có: BK//CH(cmt)
nên BK//CF
Ta có: BK//CF(cmt)
CF⊥AB(gt)
Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)
Ta có: CK//BH(cmt)
nên CK//BE
Ta có: CK//BE(cmt)
BE⊥AC(gt)
Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)
c) Vì H và I đối xứng nhau qua BC
nên BC là đường trung trực của HI
⇔C nằm trên đường trung trực của HI
hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BHCK là hình bình hành(cmt)
nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)
Từ (1) và (2) suy ra CI=BK
Gọi O là giao điểm của BC và HI
mà BC là đường trung trực của HI
nên O là trung điểm của HI
Xét ΔHIK có
O là trung điểm của HI(cmt)
M là trung điểm của HK(H và K đối xứng nhau qua M)
Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)
⇒OM//IK(Định lí 2 về đường trung bình của tam giác)
hay IK//BC
Xét tứ giác BIKC có IK//BC(cmt)
nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)
Hình thang BIKC(IK//BC) có IC=BK(cmt)
nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a) Xét tứ giác BHCK có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo HK(H và K đối xứng nhau qua M)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: BHCK là hình bình hành(cmt)
nên BK//CH và BH//CK(Các cặp cạnh đối trong hình bình hành BHCK)
Ta có: BK//CH(cmt)
nên BK//CF
Ta có: BK//CF(cmt)
CF⊥AB(gt)
Do đó: BK⊥BA(Định lí 2 từ vuông góc tới song song)
Ta có: CK//BH(cmt)
nên CK//BE
Ta có: CK//BE(cmt)
BE⊥AC(gt)
Do đó: CK⊥AC(Định lí 2 từ vuông góc tới song song)
c) Vì H và I đối xứng nhau qua BC
nên BC là đường trung trực của HI
⇔C nằm trên đường trung trực của HI
hay CH=CI(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BHCK là hình bình hành(cmt)
nên CH=BK(Hai cạnh đối trong hình bình hành BHCK)(2)
Từ (1) và (2) suy ra CI=BK
Gọi O là giao điểm của BC và HI
mà BC là đường trung trực của HI
nên O là trung điểm của HI
Xét ΔHIK có
O là trung điểm của HI(cmt)
M là trung điểm của HK(H và K đối xứng nhau qua M)
Do đó: OM là đường trung bình của ΔHIK(Định nghĩa đường trung bình của tam giác)
⇒OM//IK(Định lí 2 về đường trung bình của tam giác)
hay IK//BC
Xét tứ giác BIKC có IK//BC(cmt)
nên BIKC là hình thang có hai đáy là IK và BC(Định nghĩa hình thang)
Hình thang BIKC(IK//BC) có IC=BK(cmt)
nên BIKC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành
\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)
Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)
Do đó AHCK là hình bình hành
Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao
Do đó \(AH\bot HC\)
Vậy AHCK là hình chữ nhật
\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK
Vậy H,M,K thẳng hàng
\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M
Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)
Do đó \(HK//AB\)
Mà \(HK\bot AC\) nên \(AC\bot AB\)
Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
a: Xét tứ giác AECM có
N là trung điểm của AC
N là trung điểm của ME
Do đó: AECM là hình bình hành
a, Vì N là trung điểm AC và EM nên AECM là hbh
b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC\);MN//BC
Do đó \(ME=BC\left(MN=\dfrac{1}{2}ME\right)\) và ME//BC
Vậy AEMB là hbh
c, Vì AEMB là hbh nên AE//MB hay AE//BC
Do đó AECB là hình thang
Để AECM là hcn thì AM là đg cao tg ABC
Mà AM là trung tuyến nên tg ABC phải cân tại A thì AECM là hcn
a: Xét tứ giác ABHC có
M là trung điểm của BC
M là trung điểm của AH
Do đó: ABHC là hình bình hành