Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-co-3widehatbac2widehatabc180-do-va-so-do-3-canh-cua-tam-giac-la-3-so-chan-lien-tiep-tinh-chu-vi-cua-tam-giac-abc.448331714978
Định lý Pitago đã học ở lớp 7, trong chương trình lớp 8 lẽ ra không cần giải thích lại?
Đặt 1 cạnh góc vuông của tam giác là \(\overline{ab}\) thì cạnh huyền là \(\overline{ba}\), với a;b là các chữ số từ 1 đến 9 và \(a>b\)
Đặt cạnh góc vuông còn lại là \(c\Rightarrow10\le c< 99\)
Theo định lý Pitago:
\(\left(\overline{ab}\right)^2+c^2=\left(\overline{ba}\right)^2\Leftrightarrow\left(10a+b\right)^2+c^2=\left(10b+a\right)^2\)
\(\Leftrightarrow100a^2+20ab+b^2+c^2=100b^2+20ab+a^2\)
\(\Leftrightarrow c^2=99\left(b^2-a^2\right)\)
\(\Rightarrow c^2⋮99\) \(\Rightarrow c\) chia hết cho 2 ước nguyên tố của 99 là 3 và 11
\(\Rightarrow c⋮33\Rightarrow c=\left\{33;66\right\}\)
- Với \(c=33\Rightarrow b^2-a^2=11\Leftrightarrow\left(b-a\right)\left(b+a\right)=11\)
\(\Rightarrow\left\{{}\begin{matrix}b-a=1\\b+a=11\end{matrix}\right.\) \(\Rightarrow a=5;b=6\)
- Với \(c=66\Rightarrow b^2-a^2=44\Rightarrow\left(b-a\right)\left(b+a\right)=44\)
\(\Rightarrow\left(a;b\right)=\left(10;12\right)\) đều lớn hơn 9 (loại)
Vậy 3 cạnh của tam giác vuông đó là 33; 56; 65
Đến đây thì 1 vấn đề xuất hiện, lớp 8 chưa học đường tròn, đường tròn nội tiếp thì càng không, vậy làm sao để tính bán kính đường tròn nội tiếp tam giác?
Hình như mình đã nhắc nhở bạn một lần về việc không đăng quá nhiều lần 1 bài toán nhưng bạn vẫn làm vậy. Lần sau mình xin phép sẽ xóa hết nhé!
Lời giải:
$3\widehat{A}+2\widehat{B}=180^0$
$\Rightarrow \widehat{A}+\widehat{B}< 90^0\Rightarrow \widehat{C}>90^0$
Do đó trong tam giác $ABC$ thì $AB$ là cạnh lớn nhất. Trên $AB$ lấy $M$ sao cho $AM=AC$
Ta có:
$\widehat{AMC}=\frac{180^0-\widehat{A}}{2}$
$\Rightarrow \widehat{BMC}=180^0-\frac{180^0-\widehat{A}}{2}=180^0-\frac{3\widehat{A}+2\widehat{B}-\widehat{A}}{2}$
$=180^0-(\widehat{A}+\widehat{B})=\widehat{ACB}$
Do đó:
$\triangle ACB\sim \triangle CMB$ (g.g)
$\Rightarrow \frac{AB}{CB}=\frac{CB}{MB}$
$\Rightarrow AB.MB=BC^2$
$\Leftrightarrow AB(AB-AM)=BC^2$
$\Leftrightarrow AB^2-AB.AC=BC^2$.
Nếu $(AB,BC,AC)=(k, k+2, k+4)$ thì:
$k^2-k(k+4)=(k+2)^2$
$\Leftrightarrow k^2+8k+4=0$
$\Leftrightarrow k=-4\pm 2\sqrt{3}$ (loại vì $k$ tự nhiên)
Nếu $(AB, BC, AC)=(k+2, k, k+4)$ thì:
$(k+2)^2-(k+2)(k+4)=k^2$
$\Leftrightarrow k^2+2k+4=0$
$\Leftrightarrow (k+1)^2=-3< 0$ (vô lý)
Vậy không tìm được chu vi.