K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Do BE và CF lần lượt là tia phân giác của góc B và góc C nên ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà tam giác ABC cân tại A nên  ∠ B =  ∠ C

Suy ra:  ∠ ABE = ∠ ACF

Xét hai tam giác AEB và AFC

Có AB = AC ( ∆ ABC cân tại A)

∠ ABE =  ∠ ACF (chứng minh trên)

∠ A là góc chung

⇒  ∆ AEB =  ∆ AFC (g.c.g) ⇒ AE = AF ⇒  ∆ AEF cân tại A

⇒  ∠ AFE = ( 180 0 −  ∠ A) / 2 và trong tam giác  ∆ ABC:  ∠ B = ( 180 0 − ∠A) / 2

⇒ ∠ AFE =  ∠ B ⇒ FE//BC ( có hai góc ở vị trí đồng vị bằng nhau).

⇒ Tứ giác BFEC là hình thang.

Vì FE//BC nên ta có:  ∠ FEB =  ∠ EBC (so le trong)

Lại có:  ∠ FBE =  ∠ EBC ( vì BE là tia phân giác của góc B)

⇒ ∠ FBE =  ∠ FEB

⇒  ∆ FBE cân ở F ⇒ FB = FE

⇒ Hình thang BFEC là hình thang cân có đáy nhỏ bằng cạnh bên (đpcm)

A B C E F

Ta có: \(\Delta ABC\) cân tại A (gt)

mà BE, CF lần lượt là tia phân giác của \(\widehat{ABC}\)\(\widehat{ACB}\) (gt)

=> BE = CF

Xét \(\Delta ABE\)\(\Delta ACF\) có:

BE = CF (cmt)

\(\widehat{ABE}=\widehat{ACF}\) \(\left(\widehat{ABC}=\widehat{ACB}=2\widehat{ABE}=2\widehat{ACF}\right)\)

AB = AC (\(\Delta ABC\) cân tại A)

Do đó: \(\Delta ABE=\Delta ACF\left(c.g.c\right)\)

=> AE = AF (2 cạnh tương ứng)

=> \(\Delta AFE\) cân tại A

\(\Delta ABC\) cân tại A

nên \(\widehat{ABC}=\widehat{AFE}\)

mà chúng ở vị trí đồng vị

=> FE // BC (dấu hiệu nhận biết)

=> BFEC là hình thang

mà BE = CF

=> BFEC là hình thang cân

Ta có: EF // BC (cmt)

=> \(\widehat{EFC}=\widehat{FCB}\) (2 góc so le trong)

\(\widehat{FCB}=\widehat{ECF}\) (CF là tia phân giác \(\widehat{ECB}\))

=> \(\Delta FEC\) cân tại E (t/c tam giác cân)

=> FE = EC (Đ/N tam giác cân)

mà hình thang BFEC cân

=> BFEC là hình thang cân có đáy nhỏ bằng cạnh bên

29 tháng 6 2017

Hình thang cân