K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) +Xét tam giác ABD :

ta có góc B = 60* ,góc BAD = 60*

mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )

=> góc ADB = 60*

=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm

ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm

+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :

AB^2 = AH^2 + BH^2 => em tự tính AH nhé

+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm

+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm

AC^2 =AH^2 + HC^2 => tự tính AC

b) em tính AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A

a: Xét ΔABC có AB<BC

nên \(\widehat{ACB}< \widehat{BAC}\)

b: Xét ΔAMB có 
AH là đường cao

AH là đường trung tuyến

Do đó: ΔAMB cân tại A

mà \(\widehat{B}=60^0\)

nên ΔAMB đều

 

 

a) Xét ΔABC có

BC>AB(15cm>7cm)

mà góc đối diện với cạnh BC là \(\widehat{BAC}\)

và góc đối diện với cạnh AB là \(\widehat{ACB}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

a) Xét ΔABC có 

BA<BC(gt)

mà góc đối diện với cạnh BA là \(\widehat{ACB}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có

HB=HM(gt)

AH chung

Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)

Suy ra: BA=MA(hai cạnh tương ứng)

Xét ΔBAM có BA=MA(cmt)

nên ΔBAM cân tại A(Định nghĩa tam giác cân)

Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)

nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)

a: Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD

b: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)

nên ΔABD đều

c: Ta có: ΔABD đều

=>\(\widehat{BAD}=60^0\)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}=90^0-60^0=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔDHA=ΔDEC

=>AH=EC

d: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)

=>\(BC=5\cdot2=10\left(cm\right)\)

Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

14 tháng 3 2022

Đề sai, xem lại đề