K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

p dụng định lí hàm số cos của tam giác thường ta có:
AC² = AB² + BC² - 2AB.AC.c0s60*
13² = AB² + BC² - AB.BC (1)
giả thiết: BC - AB = 7 --> BC = 7 + AB thay vào (1)
1<=> 169 = AB² + (7 + AB²) - AB(7 + AB)
<=> 169 = AB² + 49 + 14AB + AB² - 7AB - AB²
<=> AB² + 7AB - 120 = 0
<=> AB = 8 --> BC = 15
.......AB = -15 ( LOẠI, cạnh không âm)

10 tháng 6 2016

tam giac bc là tam giac j

10 tháng 6 2016

tam giác nhọn

9 tháng 6 2019

giúp vs ạ

10 tháng 8 2016

ko biết làm tại mới lớp 6

1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)

\(\Leftrightarrow48,68-AC^2=13,57\)

hay \(AC=5,93\left(cm\right)\)

a: góc C=90-40=50 độ

sin C=AB/BC

=>7/BC=sin50

=>BC=9,14(cm)

=>\(AC\simeq5,88\left(cm\right)\)

b: góc B=90-30=60 độ

sin C=AB/BC

=>AB/16=1/2

=>AB=8cm

=>AC=8*căn 3(cm)

c: BC=căn 18^2+21^2=3*căn 85(cm)

tan C=AB/AC=6/7

=>góc C=41 độ

=>góc B=49 độ

d: AB=căn 13^2-12^2=5cm

sin C=AB/BC=5/13

=>góc C=23 độ

=>góc B=67 độ

24 tháng 8 2016

1.Toán lớp 9

Kẻ đường cao CH

Xét tam giác vuông HCB,ta có:

góc B +    góc C=90

  60  +    góc C=90     

=> góc C= 30=> góc C=10

Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:

    HB= BC x cot góc B = 9 x cot 60= 33 (cm)

=>HC=BC- HB=9- (3√3)= 3√6 (cm) (Đinh lí Py-ta-go)

    AH= HC x tan góc C= 3√6 x tan 10=1,3 (cm)

Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)

AC = AH : sin góc C2 = 7,49 (cm)

Vậy  AB = 6,49 cm ; AC = 7,49 cm

2.Toán lớp 9

Kẻ đường cao AH.

Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:

BH = AB x cos góc B = 3,2 x cos 70= 1,09 (cm)

AH= BH x tan góc B =1,09 x tan 70= 2,99 (cm)

Ta có : BC  -  BH  = HC

  => HC =  6,2  - 2,99 = 3,21 (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:

      AC2 AH+HC = (2,99)+(3,21)2  =>AC= 4,39 (cm)

Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha thanghoa

 

 

 

 

 

 

 

 

9 tháng 11 2023

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)