K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

ko bit

a﴿ +﴿ XétΔ HAB vuông tại H có: góc BAH + góc ABH = 90 độ﴾Định lí tổng 2 góc nhọn trong 1 tam giác vuông﴿

 hay góc BAC + góc ABH = 90 độ﴾1﴿

+﴿ Xét ΔKAC vuông tại K có: góc CAK + góc ACK = 90 độ ﴾Định lí tổng 2 góc nhọn trong 1 tam giác vuông﴿

hay góc BAC + góc ACK= 90 độ﴾2﴿

Từ ﴾1﴿ và ﴾2﴿ => góc ABH = góc ACK ﴾3﴿

+﴿ Ta có: góc ACN + góc ACK= 180 độ﴾ 2 góc kề bù﴿ góc ABM + góc ABH = 180 ﴾2 góc kề bù﴿

Mà góc ABH =góc  ACK ﴾theo c/m 3﴿ => góc ACN= góc ABM 

Vậy góc ACN = góc ABM ﴾đpcm﴿

 +﴿ Xét ACN và BMA có:

AC = BM﴾ giả thiết ﴿

góc ACN = ABM ﴾c/m a﴿

AB = CN﴾giả thiết﴿

=> Δ ACN =Δ BMA ﴾c. g . c﴿

Vậy ΔABM = ΔNAC ﴾đpcm﴿

b﴿ +﴿ Ta có: ΔACN = ΔMBA ﴾c/m b﴿ => AM = AN ﴾2 cạnh tương ứng﴿ ﴾4﴿

=> góc NAC = AMB ﴾2 góc tương ứng﴿ ﴾5﴿

+﴿ XétΔ AMN có: AM = AN ﴾c/m 4﴿

=> ΔAMN cân tại A

+﴿ Xét góc ABH là góc ngoài của ΔABC tại đỉnh B

=> góc MAB +góc  AMB = góc ABH ﴾6﴿

Từ ﴾5﴿ và ﴾6﴿ => góc MAB + góc NAC = góc BAH 

Mà: góc BAC +góc  ABH = 90 ﴾c/m 1﴿ => góc BAC + góc MAB + góc NAC = 90  độ

=>góc MAN = 90 độ

 Hay AM vuông góc AN﴾đpcm﴿

Chúc bn hok tốt! Nhớ tk mk nha

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

3 tháng 5 2015

A B C O H K M N

Theo đề bài ta vẽ được hình trên, và dễ dàng nhận thấy tam giác OBC là tam giác cân tại đỉnh O.

Giải thích:

* Xét tam giác CKN vuông tại K và tam giác BHM vuông tại H, ta có:

CN=BM (đề bài cho)

nên ta chứng minh được hai tam giác vuông CKN và BHM bằng nhau (Trường hợp hai tam giác vuông có cạnh huyền bằng nhau). 

Vậy cặp góc tương ứng MBH và góc NCK bằng nhau.

Mà góc NCK= góc BCO (đối dỉnh) (1)

Và góc MBH = góc CBO (đối đỉnh) (2)

Từ (1)(2) ta chứng minh được góc BCO = góc CBO .

vậy tam giác OBC cân tại O.

 

 

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

XétΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}=\widehat{CAK}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

b: Ta có: ΔABM=ΔACN

nên AM=AN

 

8 tháng 2 2020

a, tam giác ABC cân tại A (Gt)

=> góc ABC = góc ACB (tc)

góc ABC + góc ABM = 180

góc ACB + góc ACN = 180

=> góc ABM = góc ACN 

xét tam giác ABM và tam giác ACN có : BM = CN (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABM = tam giác ACN (c-g-c)

=> AM = AN (đn)

=> tam giác AMN cân tại A (đn)

b, tam giác AMN cân tại A (câu a)

=> góc AMN = góc ANM (tc)

xét tam giác MBH và tam giác NCK có : MB = CN (gt)

góc MHB = góc CKN = 90 

=> tam giác MBH = tam giác NCK (ch-gn)

=> BH = CK (đn)

c, tam giác MBH = tam giác NCK (câu b)

=> góc HBM = góc KCN (đn)

góc HBM = góc CBO (đối đỉnh)

góc KCN = góc BCO (đối đỉnh)

=> góc CBO = góc BCO 

=> tam giác BOC cân tại O (đl)

1 tháng 3 2019

AI NHANH MIK CHO 3  NHA

1 tháng 3 2019

 tự kẻ hình :

a, tam giác ABC cân tại A (gt)

=> AB = AC (đn)         (1)

     góc ABC = góc ACB (đl)

góc ABC + góc ABM = 180 (kb)

góc ACB + góc ACN = 180 (kb)

=> góc ABM = góc ACN          (2)

xét tam giác ABM  và tam giác ACN có : BM = CN (gt) và (1); (2)

=> tam giác ABM = tam giác ACN (c-g-c)

=> MA = NA (đn)

=> tam giác AMN cân tại A (đn)

b, xét tam giác HBM và tam giác KCN có : MB = CN (gt)

góc M = góc N do tam giác AMN cân (câu a)

góc MHB = góc NKC = 90 do ...

=> tam giác HBM = tam giác KCN (ch - gn)

=> HB = CK (đn)

c, có AM = AN (Câu a)

AM = AH + HM

AN = AK + KN 

HM = KN do tam giác HBM = tam giác KCN (câu b)

=> HM = KN