Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
c: góc EDC+góc C=90 độ
góc B+góc C=90 độ
=>góc EDC=góc ABC
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
DO đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
c: AH⊥BC
DE⊥BC
Do đó:AH//DE
d: \(\widehat{ABC}+\widehat{C}=90^0\)
\(\widehat{EDC}+\widehat{C}=90^0\)
Do đó: \(\widehat{ABC}=\widehat{EDC}\)
Để tìm độ dài DA và DE, ta cần làm theo các bước sau:
1. Vẽ tam giác ABC, biết rằng góc A bằng 90 độ.
2. Trên cạnh BC, lấy điểm E sao cho BE = BA.
3. Vẽ tia phân giác của góc B, cắt AC tại điểm D.
4. Để tính độ dài DA và DE, ta có thể sử dụng định lí phép đổi vị trí.
Định lí phép đổi vị trí nói rằng trong tam giác vuông, nếu ta hoán đổi vị trí của các cạnh góc vuông và cạnh đối diện, thì độ dài 2 cạnh vuông góc với nhau sẽ không thay đổi.
Vì vậy, ta có: BD = BA (vì BD là cạnh đối diện góc vuông A),
và AD = AC (vì AD là cạnh vuông góc với BD).
5. Tiếp theo, để tính số đo góc BED, ta có thể sử dụng quy tắc cộng góc trong tam giác.
Ta biết rằng góc BED được tạo bởi tia BD và tia DE. Vì vậy, ta có:
BED = BDE + EDB.
Vì góc A là góc vuông, nên góc BAC + góc ABC + góc BCA = 180 độ (quy tắc tổng góc trong tam giác).
Vì góc ABC là góc vuông, nên góc BCA = 180 - góc BAC.
Vì vậy, góc EDB = góc ABC - góc BCA = 90 - (180 - góc BAC) = góc BAC - 90.
Do đó, góc BED = BDE + EDB = góc BAC + (góc BAC - 90) = 2góc BAC - 90.
Tóm lại, ta đã tìm được độ dài DA và DE là DA = AC và DE = BC, cũng như tính được số đo góc BED là 2góc BAC - 90.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
b: Xét ΔBAE có BA=BE và góc B=60 độ
nên ΔBAE đều
=>BE=AB=6cm
=>BC=12cm
sai đề bài rồi
Sai o dau vay?