Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do BE là p/g ˆ\(A B C\)
\(⇒ ˆ B 1 = ˆ B 2 = 1 2 ˆ A B C\)
Xét \(Δ A B E có ˆ B E \)là góc ngoài đỉnh E
\(⇒ ˆ B E C = ˆ A + ˆ B 1 = 90 ^0 + ˆ B 1 = 110 ^0\)
\(⇒ ˆ B 1 = 110 ^0 − 90 ^0 = 20 ^0\)
\(⇒ ˆ A B C = 20 ^0 .2 = 40 ^0\)
Xét \(Δ A B C\)vuông tại A
\(⇒ ˆ A B C + ˆ C = 90 ^0\)
\(⇒ 40 ^0 + ˆ C = 90 ^0\)
\(⇒ ˆ C = 90 ^0 − 40 ^0\)
\(⇒ ˆ C = 50 ^0\)
Vậy \(C = 50 ^0\)
Xét tam giác vuông ABE có
^ABE + ^AEB = 180 - ^BAE=180 - 90 = 90 => ^AEB < 90
Mà ^AEC=180=^AEB + ^BEC
=> ^BEC=180 - ^AEB >90 => ^BEC là góc tù
Trong tam giác ABC có góc BAC + ABC + ACB = 180 độ
\(\Rightarrow\) góc ABC + góc ACB = 180 độ - góc BAC = 180 độ - 60 độ = 120 (độ)
Ta có góc IBC + góc ICB = góc ABC/2 + góc ACB/2 = (góc ABC + góc ACB)/2 = 120 độ/2 = 60 (độ)
Trong tam giác IBC có góc BIC + góc IBC + góc ICB = 180 độ
\(\Rightarrow\) góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
Do BE là p/g \(\widehat{ABC}\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{ABC}\)
Xét \(\Delta ABE\)có \(\widehat{BEC}\)là góc ngoài đỉnh E
\(\Rightarrow\widehat{BEC}=\widehat{A}+\widehat{B_1}=90^0+\widehat{B_1}=110^0\)
\(\Rightarrow\widehat{B_1}=110^0-90^0=20^0\)
\(\Rightarrow\widehat{ABC}=20^0.2=40^0\)
Xét \(\Delta ABC\)vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{C}=90^0\)
\(\Rightarrow40^0+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-40^0\)
\(\Rightarrow\widehat{C}=50^0\)
Vậy \(\widehat{C}=50^0\)