Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
CM tam giác ABC= tam giác AEG
\(\Rightarrow\)góc GEA= góc ABC
góc EGA = góc ACB
ta có góc HAC= góc ABH ( cùng phụ goc BAH)
góc OAE= góc HAC
\(\Rightarrow\) góc OEA= góc OAE
\(\Rightarrow\)OA=OE
CMTT: OA=OG
suy ra OE=OG (1)
ta có góc GAC+ HAC+BAH=180độ
mà BAH=OAG
 \(\Rightarrow\) OAG+GAC+HAC=180 độ
O,A ,H thẳng hàng(2)
từ 1 va 2 suy ra đfcm
O là trung điểm EG
Bài 12:
:v Mình sửa P là trung điểm của EG
a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)
Xét tam giác EAC và tam giác BAG có:
\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)
\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )
+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG
Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)
Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )
Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)
Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)
\(\Rightarrow\widehat{IOC}=90^0\)
\(\Rightarrow BG\perp EC\)
b) Vì ABDE là hình vuông (gt)
\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)
Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)
\(\Rightarrow QM\)là đường trung bình của tam giác EBC
\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)
CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)
Mà EC=BG (cm câu a )
\(\Rightarrow QM=MN=NP=PQ\)
Xét tứ giác MNPQ có \(QM=MN=NP=PQ\left(cmt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)
CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )
Mà \(BG\perp EC\left(cmt\right)\)
\(\Rightarrow MN\perp MQ\)
\(\Rightarrow\widehat{QMN}=90^0\)(2)
Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb )
\(\)
Bài 11:
a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{DAE}=180^0\)
\(\Rightarrow D,A,E\)thẳng hàng
b) Vì AHBD là hình chữ nhật (gt)
\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)
Mà P là trung điểm của AB (gt)
\(\Rightarrow P\)là trung điểm của DH (1)
\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)
\(\Rightarrow PH=PA\)
\(\Rightarrow P\in\)đường trung trục của AH
CMTT Q thuộc đường trung trực của AH
\(\Rightarrow PQ\)là đường trung trực của AH
c) Từ (1) => P thuộc DH
=> D,P,H thẳng hàng
d) Vì ABCD là hình chữ nhật (gt)
=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ
=> góc DHA= 45 độ
CMTT AHE =45 độ
=> góc DHA+ góc AHE=90 độ
Hay góc DHE=90 độ
=> DH vuông góc với HE
a: Ta có: ABDE là hình vuông
=>AD là phân giác của góc BAE và \(\widehat{BAE}=\widehat{BDE}=\widehat{DEA}=\widehat{DBA}=90^0\)
AD là phân giác của góc BAE
=>\(\widehat{BAD}=\widehat{EAD}=\dfrac{\widehat{BAE}}{2}=45^0\)
Ta có: ACFK là hình vuông
=>AF là phân giác của góc KAC và \(\widehat{CAK}=\widehat{AKF}=\widehat{CFK}=\widehat{ACF}=90^0\)
\(\widehat{BAK}=\widehat{BAC}+\widehat{CAK}\)
\(=90^0+90^0=180^0\)
=>B,A,K thẳng hàng
AF là phân giác của góc CAK
=>\(\widehat{KAF}=\widehat{CAF}=\dfrac{1}{2}\cdot90^0=45^0\)
=>\(\widehat{DAB}=\widehat{FAK}\)(=45 độ)
mà \(\widehat{FAK}+\widehat{BAF}=180^0\)(hai góc kề bù)
nên \(\widehat{DAB}+\widehat{BAF}=180^0\)
=>\(\widehat{DAF}=180^0\)
=>D,A,F thẳng hàng
b: ta có: \(\widehat{BAC}+\widehat{BAE}=\widehat{EAC}\)
=>\(\widehat{EAC}=90^0+90^0=180^0\)
=>E,A,C thẳng hàng
Xét ΔABE vuông tại A và ΔAKC vuông tại A có
\(\dfrac{AB}{AK}=\dfrac{AE}{AC}\)
Do đó: ΔABE đồng dạng với ΔAKC
=>\(\widehat{ABE}=\widehat{AKC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BE//KC
Ta có: BK=BA+AK
EC=EA+AC
mà AK=AC và BA=EA
nên BK=EC
Xét tứ giác BEKC có BE//KC và BK=EC
nên BEKC là hình thang cân
Đề này bị thiếu rồi. Phải có thêm điều kiện tam giác ABC vuông hoặc cân nữa mới làm được câu c.