K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

A B C E D F M N I H K

a) 3 đường cao AD;BE;CF của \(\Delta\)ABC gặp nhau tại H.

Thấy ngay: Tứ giác BFHD nội tiếp đường tròn => ^FBH=^FDH (1)

Tương tự: ^ECH=^EDH (2)

Từ (1) và (2) kết hợp với ^FBH=^ECH (Cùng phụ ^BAC) => ^FDH=^EDH

=> DH là tia phân giác của ^FDE.

Ta có: MN // BC và AD vuông BC => MN vuông AD (Quan hệ //, vg góc)  

Xét \(\Delta\)MDN: DH vuông MN (cmt); DH là p/g ^MDN (hay ^FDE)

=> \(\Delta\)MDN cân đỉnh D => DM=DN => AD là đường trung trực của MN

=> AM=AN => \(\Delta\)AMN cân đỉnh A (đpcm).

b) Tia AM cắt BC tại K.

Xét \(\Delta\)NAI: ^AIN=1800 - (^IAN + ^INA) (3)

Ta thấy: ^IAN = ^MAI - ^MAN = ^BAC - ^MAN = ^BAM + ^CAN (Do ^MAI=^BAC)

             ^INA= ^NAD + ^NDA (Do ^INA là góc ngoài tam giác AND)

=> ^IAN + ^INA = ^BAM + (^CAN +^NAD) + ^NDA = ^BAM + ^NDA + ^DAC

= ^BAM + ^NDA + ^CBE

Lại có: Tứ giác AEDB nội tiếp đường tròn => ^ADE=^ABE hay ^NDA=^ABE

=> ^IAN + ^INA = ^BAM + ^CBE + ^ABE = ^BAM + ^ABC= ^BAK + ^ABK

Mà ^AMN=^AKC (Đồng vị) = ^BAK + ^ABK (Góc ngoài đỉnh K tam giác AKB)

Suy ra: ^IAN + ^INA = ^AMN (4)

Thế (4) vào (3) => ^AIN = 1800 - ^AMN <=> ^AIN + ^AMN =1800

=> Tứ giác AMNI nội tiếp đường tròn (đpcm).

c)  Dễ c/m \(\Delta\)AMD=\(\Delta\)AND (c.c.c) => ^AMD=^AND <=> 1800-^AMD=1800-^AND

=> ^AMF=^ANI. Mà tứ giác AMNI nt => ^ANI=^AMI

Do đó: ^AMF=^AMI => MA là tia phân giác ^FMI (đpcm).

16 tháng 6 2018

cảm ơn bạn Kurokawa Neko, bạn trả lời sớm giúp mình, mình đang ôn đội tuyển nên có rất nhiều bài cần hỏi, bạn giúp mình nha.

Cảm ơn!

3 tháng 7 2021

- Áp dụng định lý pitago vào tam giác DEF vuông tại D :

\(DE=\sqrt{FE^2-DF^2}=27\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác DEF vuông tại D đường cao DI

\(\left\{{}\begin{matrix}DI.FE=DE.DF\\DE^2=EI.FE\\DF^2=FI.FE\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}DI=21,6\\EI=16,2\\FI=28,8\end{matrix}\right.\) ( cm )

Vậy ...

3 tháng 7 2021

pyta go \(=>DE=\sqrt{ÈF^2-DF^2}=\sqrt{45^2-36^2}=27cm\)

áp dụng hệ thức lượng

\(=>DI.EF=DE.DF=>DI=\dfrac{27.36}{45}=21,6cm\)

\(=>DE^2=EI.EF=>EI=\dfrac{27^2}{45}=16,2cm\)

\(=>FI=45-16,2=28,8cm\)

 

11 tháng 10 2023

\(BC=\sqrt{3^2+4^2}=5\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)

\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)

11 tháng 10 2023

Bạn giải kỹ giúp mình dc ko ạ

 

26 tháng 4 2016

Chào người đẹp

a) Dễ quá

b)Quá dễ

 c) ko khó

DF = DL => DB là đường trung trực của FL

=> BD vuông góc và  chia FL ra 2 đoạn bằng nhau

hay OB vừa đg cao vừa đường trung tuyến

=> tam giác FOL cân

=>OF= OL

=>BLC=90độ

chắn nữa đường tròn

d) dễ quá khỏi làm

26 tháng 4 2016

d)Gọi Q là giao điểm của (O) và SC

Vì EF song song với BQ (do RSQ=BQC=90)

=>EQ=BF;BF=BL=>EQ=BF=BL

=>góc EBQ=BQL(cùng nhìn 2 cung bằng nhau)

Mà EQ=BL

=>tứ giác BEQL là hình thang cân 

=>BQ=EL

mà tứ giác SQBR là hình chữ nhật =>RS=BQ

EL=DE+DL

=>...........

hsg có mấy chỗ tự hiểu

31 tháng 8 2016

A B C D E F

Xét tam giác vuông ABC, theo hệ thức lượng: \(BD=\frac{c^2}{a}.\)

Xét tam giác vuông BDA, ta có: \(m=EB=\frac{BD^2}{BA}=\frac{c^3}{a^2}\)

Hoàn toàn tương tự: \(n=\frac{b^3}{a^2}\)

Vậy thì \(a.m.n=\frac{b^3.c^3}{a^3}\)

Lại có: \(bc=ah\Rightarrow\frac{bc}{a}=h\Rightarrow\frac{b^3c^3}{a^3}=h^3\Rightarrow a.m.n=h^3.\)