Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a^2+b^2+c^2 -ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
Lời giải:
$a^3+b^3+c^3=3abc$
$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$
$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.
$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.
$\Rightarrow$ để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
$\Rightarrow ABC$ là tam giác đều.
\(\Leftrightarrow ab\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+bc\left(\dfrac{1}{a+c}-\dfrac{1}{a+b}\right)+ca\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)=0\)
\(\Leftrightarrow\dfrac{ab\left(a-b\right)}{\left(b+c\right)\left(a+c\right)}+\dfrac{bc\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{ca\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}=0\)
\(\Leftrightarrow\dfrac{ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) hay tam giác cân