K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2023

Do B thuộc BH nên tọa độ có dạng \(B\left(b;2b+3\right)\)

Gọi E là trung điểm AB \(\Rightarrow E\left(\dfrac{b+1}{2};b+3\right)\)

Do E thuộc CE nên:

\(\dfrac{b+1}{2}+b+3-2=0\Rightarrow b=-1\) \(\Rightarrow B\left(-1;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-2;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-1) là 1 vtpt

Phương trình AB:

\(1\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow x-y+2=0\)

E(x;-x+2)

Theo đề, ta có: \(\left\{{}\begin{matrix}x=\dfrac{1+x_B}{2}\\-x+2=\dfrac{3+y_B}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B+1=2x\\y_B+3=-2x+4\end{matrix}\right.\)

=>B(2x-1;-2x+1)

vecto AB=(2x-2;-2x-2)

BH: 2x-y+3=0

=>VTPT là (2;-1)

=>VTCP là (1;2)

Theo đề, ta có: 1(2x-2)+2(-2x-2)=0

=>2x-2-4x-4=0

=>-2x-6=0

=>x=-3

=>B(5;-5)

vecto AB=(4;-8)

=>VTPT là (8;4)

Phương trình AB là:

8(x-5)+4(y+5)=0

=>2(x-5)+y+5=0

=>2x-10+y+5=0

=>2x+y-5=0

10 tháng 5 2016

BC : x-4y-1=0, CA : x+2y-7=0 và AB : x-y+2=0

13 tháng 3 2021

Cho tam giác abc có tọa độ A(-2;3) pt đường trung tuyến BM 2x-y+1=0 và CN x+y-4=0 M,N lần lượt là trung điểm AC và AB .TÌM tọa độ B

11 tháng 1 2018

Đáp án A

Gọi AI là đường cao kẻ từ đỉnh A của tam giác. Gọi M là trực tâm của tam giác ABC

Khi đó tọa độ điểm M thỏa mãn hệ phương trình

Đ ư ờ n g   t h ẳ n g   A I   q u a   M ( 7 3 ; - 2 3 )   v à   n h ậ n   n → ( 4 ; 5 )   l à m   V T P T .

Hay 4x+ 5y – 6= 0

23 tháng 6 2020

+) Phương trình đường cao qua B : 2x - y + 1 = 0 

=> Phương trình AC có dạng : x + 2y + c = 0 

Vì A ( 2; -1 ) thuộc AC => 2 + 2 ( -1 ) + c = 0 => c = 0

=> Phương trình AC: x + 2y = 0 

=> Tọa độ điểm C thỏa mãn phương trình AC và đường cao qua C 

nên là nghiệm của hệ pt: \(\hept{\begin{cases}x+2y=0\\3x+y+2=0\end{cases}}\)<=> C ( -4/5; 2/5) 

+) Phương trình đường cao qua B : 3x + y + 2 = 0 

=> Phương trình AB có dạng : x - 3y + b = 0 

Vì A ( 2; -1 ) thuộc AB => 2 - 3 ( -1 ) + b= 0 => c = -5

=> Phương trình AB: x -3y -5 = 0 

=> Tọa độ điểm B thỏa mãn phương trình AB và đường cao qua CB

nên là nghiệm của hệ pt: \(\hept{\begin{cases}2x-y+1=0\\x-3y-5=0\end{cases}}\)<=> C ( -8/5; -11/5) 

+) M là trung điêm BC => M ( -6/5; -9/10 ) 

Mà A ( 2; -1) 

=> \(\overrightarrow{MA}=\left(\frac{16}{5};-\frac{1}{10}\right)\)

=> MA có véc tơ pháp tuyến: ( 1/10; 16/5)

=> Viết phương trình MA : 1/10 ( x- 2 ) + 16/5 ( y+ 1 ) = 0 

<=> x + 32y+ 30 = 0  

NV
15 tháng 2 2022

Thay tọa độ A vào 2 pt trung tuyến đều không thỏa mãn

\(\Rightarrow\) 2 trung đó đó xuất phát từ B và C, giả sử trung tuyến xuất phát từ B có pt x-2y+1=0 và từ C có pt y=1

\(\Rightarrow B\left(2b-1;b\right)\) ; \(C\left(c;1\right)\)

Gọi G là trọng tâm tam giác \(\Rightarrow\) G là giao điểm 2 trung tuyến nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-2y+1=0\\y=1\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}1+2b-1+c=3.1\\3+b+1=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2b+c=3\\b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-1\\c=5\end{matrix}\right.\)

\(\Rightarrow B\left(-3;-1\right)\) ; \(C\left(5;1\right)\)

Biết 3 tọa độ 3 đỉnh của tam giác, dễ dàng viết được phương trình các cạnh

NV
7 tháng 2 2021

1.

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)

\(\Rightarrow A\left(-5;-3\right)\)

Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:

\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)

Gọi M là trung điểm BC thì tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)

M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)

2.

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)

M thuộc trung tuyến kẻ từ A nên:

\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)

\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)

13 tháng 3 2021

1.

Do A không thuộc hai đường trung tuyến đã cho nên giả sử đường trung tuyến xuất phát từ B, C lần lượt là \(2x-y+1=0;x+y-4=0\)

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y+1=0\\x+y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\Rightarrow G=\left(1;3\right)\)

Gọi M là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\left\{{}\begin{matrix}1+3=\dfrac{2}{3}\left(x_M+2\right)\\3-3=\dfrac{2}{3}\left(y_M-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=4\\y_M=3\end{matrix}\right.\Rightarrow M=\left(4;3\right)\)

Gọi \(N=\left(m;2m+1\right)\) là trung điểm AC \(\Rightarrow C=\left(2m+2;4m-1\right)\)

Mà C lại thuộc CG nên \(2m+2+4m-1-4=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(3;1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-4}{3-4}=\dfrac{y-3}{1-3}\Leftrightarrow2x-y-5=0\)

13 tháng 3 2021

2.

1.

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-5y+1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\Rightarrow G=\left(\dfrac{2}{3};\dfrac{1}{3}\right)\)

Gọi I là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AI}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}-1=\dfrac{2}{3}\left(x_I-1\right)\\\dfrac{1}{3}-2=\dfrac{2}{3}\left(y_I-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{1}{2}\\y_I=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow I=\left(\dfrac{1}{2};-\dfrac{1}{2}\right)\)

Gọi \(M=\left(5m-1;m\right)\) \(\Rightarrow C=\left(10m-3;2m-2\right)\)

Mà C lại thuộc CN nên \(10m-3+2m-2-1=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(2;-1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-2}{2-\dfrac{1}{2}}=\dfrac{y+1}{-1+\dfrac{1}{2}}\Leftrightarrow x+3y+1=0\)

NV
8 tháng 4 2022

Do BC vuông góc đường cao AH kẻ từ A nên BC nhận (3;4) là 1 vtpt

Phương trình BC:

\(3\left(x+4\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+12=0\)

C là giao điểm BC và trung tuyến kẻ từ C nên tọa độ C là nghiệm:

\(\left\{{}\begin{matrix}4x+y+3=0\\3x+4y+12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\) \(\Rightarrow C\left(0;-3\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\) thuộc trung tuyến kẻ từ C nên tọa độ M có dạng: \(M\left(m;-4m-3\right)\)

Áp dụng công thức trung điểm: \(\left\{{}\begin{matrix}x_A=2x_M-x_B=2m+4\\y_A=2y_M-y_B=-8m-6\end{matrix}\right.\)

Do A thuộc -4x+3y+2=0 nên:

\(-4\left(2m+4\right)+3\left(-8m-6\right)+2=0\Rightarrow m=-1\) \(\Rightarrow A\left(2;2\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-3) là 1 vtpt

Phương trình AB:

\(1\left(x+4\right)-3\left(y-0\right)=0\Leftrightarrow x-3y+4=0\)

\(\overrightarrow{AC}=\left(-2;-5\right)\Rightarrow\) đường thẳng AC nhận (5;-2) là 1 vtpt

Phương trình AC:

\(5\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow5x-2y-6=0\)

NV
8 tháng 4 2022

b.

Ta có: \(\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+\left(-2\right)^2}=2\sqrt{10}\)

Gọi H là chân đường cao hạ từ C xuống AB

\(\Rightarrow CH=d\left(C;AB\right)=\dfrac{\left|0-\left(-3\right).3+4\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{13\sqrt{10}}{10}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB=13\)

Câu 1: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A(1;3)\) và hai đường trung tuyến xuất phát từ B,C lần lượt có phương trình \(y-1=0\) và \(x-2y+1=0\)a) Viết phương trình đường tròn đường kính OAb) Viết phương trình 3 đường thẳng chứa 3 cạnh của tam giác ABC Câu 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A(-1;-3)\), đương trung trực của cạnh AB có phương trình \(3x+2y-4=0\), trọng tâm\(G(4;-2)\)a) Viết...
Đọc tiếp

Câu 1: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A(1;3)\) và hai đường trung tuyến xuất phát từ B,C lần lượt có phương trình \(y-1=0\) và \(x-2y+1=0\)

a) Viết phương trình đường tròn đường kính OA

b) Viết phương trình 3 đường thẳng chứa 3 cạnh của tam giác ABC 

Câu 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A(-1;-3)\), đương trung trực của cạnh AB có phương trình \(3x+2y-4=0\), trọng tâm\(G(4;-2)\)

a) Viết PTTS,TQ của đt chứa cạnh AB của tam giác ABC

b) Tìm tọa độ trung điểm M của cạnh BC tam giác ABC

c) Tìm tọa độ điểm B,C của tam giác ABC

Câu 3:Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh \(A(3;0)\) và phương trình 2 đường cao \((BB'):2x+2y-9-0\) và \((CC'):3x-12y-1=0\)

a) Viết PTTQ cuả các đt lần lượt chứa các cạnh AB,AC của tam giác ABC

bTìm tọa độ điểm B,C và viết phương trình cạnh BC của tam giác ABC

Câu 4: Trong hệ trục tọa độ Oxy, cho elip (E) có pt:\(x^2+16y^2=16\). Tìm tọa độ có đỉnh, tiêu diểm độ dài trục lớn, trục bé của elip (E)

3
NV
23 tháng 4 2021

1.

\(\overrightarrow{OA}=\left(1;3\right)\Rightarrow OA=\sqrt{10}\)

Gọi I là trung điểm OA \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

Phương trình đường tròn đường kính OA nhận I là trung điểm và có bán kính \(R=\dfrac{OA}{2}=\dfrac{\sqrt{10}}{2}\):

\(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{5}{2}\)

b.

Gọi 2 trung tuyến là BN và CM (với M, N là trung điểm AB và AC)

B thuộc BN nên tọa độ có dạng: \(\left(b;1\right)\)

M là trung điểm AB \(\Rightarrow M\left(\dfrac{b+1}{2};2\right)\)

M thuộc CM nên tọa độ thỏa mãn:

\(\dfrac{b+1}{2}-4+1=0\Rightarrow b=5\Rightarrow B\left(5;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(4;-2\right)\Rightarrow\) pt AB: \(\left\{{}\begin{matrix}x=1+2t\\y=3-t\end{matrix}\right.\)

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\) G là giao điểm BN và CM

Tọa độ G thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow G\left(1;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-3\\y_C=3y_G-y_A-y_B=-1\end{matrix}\right.\) \(\Rightarrow C\left(-3;-1\right)\)

Biết tọa độ C, A, B bạn tự viết pt 2 cạnh còn lại

NV
23 tháng 4 2021

2.

AB vuông góc với trung trực của AB nên nhận (2;-3) là 1 vtpt và (3;2) là 1 vtcp

Phương trình tham số:

\(\left\{{}\begin{matrix}x=-1+3t\\y=-3+2t\end{matrix}\right.\)

Phương trình tổng quát:

\(2\left(x+1\right)-3\left(y+3\right)=0\Leftrightarrow2x-3y-7=0\)

b. Câu này tìm trung điểm của AB hay BC nhỉ? Ta chỉ có thể tìm được trung điểm BC sau khi hoàn thành câu c (nghĩa là thứ tự bài toán bị ngược)

Gọi N là trung điểm AB \(\Rightarrow\) tọa độ N thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y-7=0\\3x+2y-4=0\end{matrix}\right.\)  \(\Rightarrow N\left(2;-1\right)\)

N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_N-x_A=5\\y_B=2y_N-y_A=1\end{matrix}\right.\) \(\Rightarrow B\left(5;1\right)\)

G là trọng tâm tam giác nên: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=8\\y_C=3y_G-y_A-y_B=-4\end{matrix}\right.\) \(\Rightarrow C\left(8;-4\right)\)

\(\Rightarrow M\left(\dfrac{13}{2};-\dfrac{3}{2}\right)\)