Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD = DB
DE // BC
⇒ E là trung điểm của AC (đpcm)
Vì một đường thẳng đi qua trung điểm của một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba
sorry mik năm nay mới lên lớp 7 lên ko thể giúp j cho bạn
cho tam giác ABC có góc A gấp đôi góc B vẽ tia phân giác AD của góc A
từ D vẽ DE song song với AB ( E thuộc AC)
từ E vẽ EF song song với AD ( F thuộc BC)
từ F vẽ FK song song với DE (K thuộc AC)
a) tìm tất cả các góc = góc B
b)tìm trên hình vẽ các góc có 2 góc bằng nhau
c)CMR :DE là phân giác của góc ADC,EF là phân giác của góc DEC,FK là phân giác của góc EFC
1: góc EDA=góc BAD
=>góc EDA=góc EAD
=>ΔEAD cân tại E
2:
Xét tứ giác BKED có
BK//ED
KE//BD
=>BKED là hbh
=>BK=ED và KE=BD
Xét ΔBKD và ΔEDK có
BK=ED
KD chung
BD=EK
=>ΔBKD=ΔEDK
1: góc EDA=góc BAD
góc EAD=góc BAD
=>góc EDA=góc EAD
=>ΔEAD cân tại E
2: Xét tứ giác BKED có
BK//ED
KE//BD
=>BKED là hình bình hành
Xét ΔBKD và ΔEDK có
BK=ED
BD=EK
DK chung
=>ΔBKD=ΔEDK
3: BK+DE=DE+EA>AD
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét \(\Delta DBF\) và \(\Delta FED:\)
DF:cạnh chung
\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)
\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)
=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)
Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)
Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)
=>\(\widehat{DAE}=\widehat{FEC}\)
Xét \(\Delta DAE\) và \(\Delta FEC:\)
DA=FE(=BD)
\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)
\(\widehat{DAE}=\widehat{FEC}\) (cmt)
=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm
Trên tia đối tia ED lấy điểm F sao cho E là trung điểm DFXét t/g ADE và t/g CFE có
AE = CE (GT)
\(\widehat{AED}=\widehat{CEF}\) (đối đỉnh)DE = EF ( cách vẽ)
=> t/g ADE = t/g CFE (c.g.c)
=> AD = CF = BD ; \(\widehat{ADE}=\widehat{CFE}\)
Mà 2 góc này ở vị trí slt
=> CF // AB
=> \(\widehat{BDC}=\widehat{DCF}\) (slt)
Xét t/g BDC và t/g FCD có
BD = FC
\(\widehat{BDC}=\widehat{DCF}\)
DC: chung
=> t/g BDC = t/g FCD(c.g.c)
=> \(\widehat{BCD}=\widehat{FDC}\) ; BC = FD = 2EDMà 2 góc này ở vị trí slt
=> DF // BC
=> DE // BC