K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

a) Xét ΔACD và ΔECD có

CA=CE(gt)

\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACB}\), E∈BC)

CD chung

Do đó: ΔACD=ΔECD(c-g-c)

\(\widehat{CAD}=\widehat{CED}\)(hai góc tương ứng)

b) Ta có: ΔACD=ΔECD(cmt)

⇒DA=DE(hai cạnh tương ứng)

Ta có: \(\widehat{CAD}+\widehat{FAD}=180^0\)(hai góc kề bù)

\(\widehat{CED}+\widehat{BED}=180^0\)(hai góc kề bù)

\(\widehat{CAD}=\widehat{CED}\)(cmt)

nên \(\widehat{FAD}=\widehat{BED}\)

Xét ΔADF và ΔEDB có

\(\widehat{FAD}=\widehat{BED}\)(cmt)

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDB}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDB(g-c-g)

⇒DF=DB(hai cạnh tương ứng)

Ta có: DA+DB=AB(D nằm giữa A và B)

DE+DF=EF(D nằm giữa E và F)

mà DA=DE(cmt)

và DB=DF(cmt)

nên AB=EF(đpcm)

c) Ta có: CA=CE(gt)

nên C nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra CD là đường trung trực của AE

⇔CD⊥AE

hay CI⊥AE(đpcm)

18 tháng 12 2015

Tick , rồi mình trả lời cho

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

a) Xét ∆ADC có : 

CH là trung tuyến AD ( AH = HD )

CH là đường cao 

=> ∆ADC cân tại C 

=> CH là phân giác DCA 

Hay CB là phân giác DCA

b) Xét ∆ vuông BHA và ∆ vuông DHE ta có : 

BHA = DHE 

HA = HD 

=> ∆BHA = ∆DHE (cgv-gn)

=> BAH = HDE 

Mà 2 góc này ở vị trí so le trong

=> BA//DE

c) Chứng minh DKA = 90° 

=> HK = HD = HA ( tính chất )

=> HK = \(\frac{1}{2}\:AD\)