Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CA=CB
CI chung
Do đó: ΔCIA=ΔCIB
Suy ra: IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
c: IA=IB=AB/2=6(cm)
nen IC=8(cm)
d: Xét ΔCAB có CH/CA=CK/CB
nên HK//AB
a) Xét ΔCAI vuông tại I và ΔCBI vuông tại I có
CA=CB(ΔABC cân tại C)
CI chung
Do đó: ΔCAI=ΔCBI(cạnh huyền-cạnh góc vuông)
Suy ra: IA=IB(hai cạnh tương ứng)
b) Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB(cmt)
\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔBAC cân tại C)
Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)
Suy ra: IH=IK(hai cạnh tương ứng)
c) Ta có: IA=IB(cmt)
mà IA+IB=AB(I nằm giữa A và B)
nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:
\(CA^2=CI^2+AI^2\)
\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)
hay CI=8(cm)
Vậy: IC=8cm
a: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CA=CB
CI chung
Do đó: ΔCIA=ΔCIB
=>IA=IB
b: Ta có: ΔCIA=ΔCIB
=>\(\widehat{ACI}=\widehat{BCI}\)
Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
=>IH=IK
c: Ta có: ΔCAI=ΔCBI
=>AI=BI
=>I là trung điểm của AB
=>\(AI=BI=\dfrac{AB}{2}=6\left(cm\right)\)
ΔCIA vuông tại I
=>\(CI^2+IA^2=CA^2\)
=>\(CI^2=10^2-6^2=64\)
=>\(CI=\sqrt{64}=8\left(cm\right)\)
d: ΔCHI=ΔCKI
=>CH=CK
Xét ΔCAB có \(\dfrac{CH}{CA}=\dfrac{CK}{CB}\)
nên HK//AB
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
c: AB=12cm nên AI=6cm
=>CI=8cm
d: Xét ΔCAB có CH/CA=CK/CB
nên HK//AB
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó; ΔCHI=ΔCKI
Suy ra: IH=IK
c: AB=12cm nên IA=6cm
=>IC=8cm
a) Xét hai Δ vuông ACI và Δ BCI ta có:
CICI chung
AC=BCAC=BC
Góc AICAIC=Góc BICBIC=90oo
⇒ Δ ACI=ΔBCIACI=ΔBCI (ch-cgv)
⇒ IA=IBIA=IB (hai cạnh tương ứng bằng nhau)
b) Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)
c) IA=IBIA=IB=122122=66
Áp dụng định lý Pytago vào Δ vuông ACI có:
AC²=AI²+IC²AC²=AI²+IC²
⇒ IC²=AC²−AI²=10²−6²=64IC²=AC²-AI²=10²-6²=64
⇒ IC=8
a)Ta có tam giác ABC cân tại C nên
=>IC là đường trung tuyến
=>IA=IB
b)Áp dụng định lí Py-ta-go vào tam giác IBC vuông tại I, ta có:
BC2=IB2+IC2
102=62+IC2
100=36+IC2
=>IC2=100-36
=>IC2=64
=>IC=\(\sqrt{64}\)=8(cm)
c0 Tam giác ABC cân tại góc A
=>Góc C1=góc C2
Xét hai tam giác vuông CIK và CIA, ta có:
GócC1=góc C2(cmt)
IC: cạnh chung
=>tam giácCIK= tam giác CIH (cạnh huyền_góc nhọn)
=>IH=IK (hai cạnh tương ứng)
thanh thảo trả lời sai rồi
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
THẾ MÀ CÓ 6 NGƯỜI BẢO LÀ ĐÚNG
a) Xét hai t/g vuông t/gACI và t/gBCI có CI chung
=>AC=BC(gt)
=>t/gACI=t/gBCI(ch-cgv)
=>IA=IB
=>đpcm
b)Xét 2 t/g vuông t/gIHA và t/gIKB
=>IA=IB
^A=^B(CA=CB=>t/gABCcân)
=>t/gIHA=t/gIKB (cgv-gnk)
=>IH=IK
=>đpcm
c)Ta có IA=IB=122=6(cm)
Áp dụng định lý Pytago vào t/gACI (^I=90o)
Ta có IA2+IC2=AC2 hay 62+IC2=102
=>IC2=102-62
=>IC2=64cm
=>IC=8cm
d)
Ta có t/gCHI=t/gCKI
=>CH=CK
=>CHK cân => gCHK=180o(1)
Mà t/gABC=gCAB(180-ABC/2) (2)
Từ (1) và (2) =>HK //AB.
IK ở đâu ra vậy
IK\(\perp\)BC (K thuộc BC)