Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(a;b;c>0\)
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)
Hay tam giác ABC đều
a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Hay tam giác ABC đều
\(a^3+b^3+3abc>c^3\)
\(\Leftrightarrow\)\(a^3+b^3-c^3+3abc>0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc>0\)
\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc\right)-3ab\left(a+b-c\right)>0\)
\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac+bc\right)>0\)
\(a,\)\(b,\)\(c\) là 3 cạnh tam giác
\(\Rightarrow\)\(a+b-c>0\)(BĐT tam giác)
\(a^2+b^2+c^2+Ab+ac+bc>0\) do a,b,c >0
suy ra: \(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac\right)>0\)
\(\Rightarrow\)\(a^3+b^3-c^3+3abc>0\)
\(\Rightarrow\)\(a^3+b^3+3abc>c^3\)
P/S: phần BĐT mk trình bày kém, mong các bn giúp đỡ
\(a^3-b^3-c^3=3abc\)
\(\Rightarrow a^3-b^3-c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Mà \(a+b+c\ne0\) (độ dài 3 cạnh của 1 tam giác)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Do đó tam giác ABC là tam giác đều
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a^2+b^2+c^2 -ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
Lời giải:
$a^3+b^3+c^3=3abc$
$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$
$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.
$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.
$\Rightarrow$ để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
$\Rightarrow ABC$ là tam giác đều.
https://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.html
Áp dụng bất đẳng thức cosi ta được
\(a^3+b^3+c^3\ge3abc\)
Dấu = xảy ra khi a = b = c
Hay tam giác ABC đều
=> Góc ABC = 60°
\(a+b+c=1\)
\(\Leftrightarrow\left(a+b+c\right)^3=1\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)
\(\Leftrightarrow1+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)'
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)
Không mất tính tổng quát, giả sử \(a+b=0\), các trường hợp còn lại làm tương tự.
Khi đó từ \(a+b+c=1\) suy ra \(c=1\) (thỏa mãn). Thế thì \(T=0^{2023}+0^{2023}+1^{2023}=1\).
Như vậy \(T=1\)
\(a^3+b^3+c^3=3abc< =>a^3+b^3+c^3-3abc=0< =>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
vì a,b,c là độ dài 3 cạnh của tam giác ABC => a,b,c > 0 => a+b+c > 0
=>\(a^2+b^2+c^2-ab-bc-ac=0=>\frac{1}{2}.2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
=>(a-b)2+(b-c)2+(c-a)2=0
tổng 3 bt ko âm=0 <=> chúng đều = 0
<=>a-b=b-c=c-a=0
<=>a=b=c
<=>tam giác ABC là tam giác đều
vậy góc ABC=600