Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)
\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)
Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)
Ta có:
\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)
Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)
Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)
Do đó ta có đpcm
Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.
a, Ta có :tam giác ABD và tam giác ACE có
$\widehat{AEC}=\widehat{ADB}=90$
Góc A chung
=> $\bigtriangleup ABD\sim \bigtriangleup ACE$
b, Tương tự câu a ta CM được $\Delta HEB\sim \Delta HDC (g.g)$
=>$\frac{HE}{HD}= \frac{HB}{HC}\rightarrow HD.HB=HE.HC$
a. \(\overrightarrow{AB}=\left(4;-2\right)\) ; \(\overrightarrow{BC}=\left(-2;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{BC}=4.\left(-2\right)+\left(-2\right).\left(-4\right)=0\\AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\\BC=\sqrt{\left(-2\right)^2+\left(-4\right)^2}=2\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB\perp BC\\AB=BC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) vuông cân tại B
\(S_{ABC}=\dfrac{1}{2}AB.BC=10\)
b.
\(\overrightarrow{AC}=\left(2;-6\right)=2\left(1;-3\right)\)
(h) vuông góc AC nên nhận (1;-3) là 1 vtpt
Phương trình: \(1\left(x-2\right)-3\left(y-4\right)=0\Leftrightarrow x-3y+10=0\)
c.
Gọi M là trung điểm BC \(\Rightarrow M\left(5;0\right)\)
Phương trình trung trực BC qua M và vuông góc BC (nên nhận (1;2) là 1 vtpt):
\(1\left(x-5\right)+2y=0\Leftrightarrow x+2y-5=0\)
Tọa độ K là nghiệm: \(\left\{{}\begin{matrix}x+2y-5=0\\x-3y+10=0\end{matrix}\right.\) \(\Rightarrow K\left(-1;3\right)\)
Chứng minh ABHK là hbh, nhưng H là điểm nào vậy bạn?
d.
Gọi \(D\left(0;d\right)\Rightarrow\overrightarrow{CD}=\left(-4;d+2\right)\)
\(\overrightarrow{AC}.\overrightarrow{CD}=0\Leftrightarrow2.\left(-4\right)+\left(-6\right).\left(d+2\right)=0\Rightarrow d=-\dfrac{10}{3}\)
\(\Rightarrow D\left(0;-\dfrac{10}{3}\right)\)
1) Cho tam giac ABC co A( -1;2); B(0;3); C(5;-2). Tim toa do chan duong cao ha tu dinh A cua tam giac ABC.
Giải
Gọi tọa độ châ đường cao là H( a,b).
-Do AH vuông góc BC và BH vuông góc AC nên ta có:
\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)
<=> Hệ phương trình: \(\left\{{}\begin{matrix}5x-5y=-15\\6x-4y=-12\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
Chọn A.