K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2021

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: ˆEAB=ˆDAB(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: ˆDAC=ˆFAC(hai góc tương ứng)

Ta có: ˆEAF=ˆEAB+ˆBAD+ˆCAD+ˆFAC

=2⋅(ˆBAD+ˆCAD)

=2⋅600=1200

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

hay AE=AD(1) và BD=BE

Ta có: D và F đối xứng nhau qua AC(gt)

nên AC là đường trung trực của DF

hay AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔAEB và ΔADB có 

AE=AD(cmt)

AB chung

BE=BD(cmt)

Do đó: ΔAEB=ΔADB(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có

AD=AF(cmt)

AC chung

CD=CF(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Ta có: AE=AD

AF=AD

Do đó: AE=AF

b: Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

c: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

20 tháng 7 2015

Một bài đã làm không xong mà bạn ra hai bài thì ............

28 tháng 9 2018

Bài 1: Con tham khảo tại câu dưới đây nhé.

Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath

Bài 1: 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

4 tháng 8 2018

Hãy tích cho tui đi

Nếu bạn tích tui

Tui không tích lại đâu

THANKS

Bài 1: 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN