K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

a) Tam giác AGP và PGB có chung đường cao hạ từ đỉnh G và AP = PB nên SAGP = SPGB

Tương tự, ta có: SBGM = SMGC và SCGN = SNGA.

Vì G là trọng tâm DABC Þ AG = 2GM.

Þ SBGM = 1 2 SABG Þ SBGM = SAGP = SPGB.

Chứng minh tương tự, ta suy ra được:

SAGP = SPGB = SBGM = SMGC = SCGN = SNGA

b) Sử dụng kết quả câu a) ta có diện tích mỗi tam giác bằng 1 6  SABC, từ đó suy ra ĐPCM.

2 tháng 8 2018

Từ đề bài , ta có: G là trọng tâm của \(\Delta ABC\)

\(\Rightarrow GC=2GK=GK+KH=GH\)

và \(GB=2GN=GN+NI=GI\)

Chứng minh được \(\Delta CGB=\Delta HGI\left(c.g.c\right)\) \(\Rightarrow IH=BC\) (2 cạnh tương ứng)

Vậy \(IH=BC.\)

Xét ΔANG và ΔCND có 

\(\widehat{GAN}=\widehat{DCN}\)

NA=NC

\(\widehat{ANG}=\widehat{CND}\)

Do đó: ΔANG=ΔCND

Suy ra: NG=ND

Xét ΔBAC có 

BN là đường trung tuyến ứng với cạnh huyền AC

AM là đường trung tuyến ứng với cạnh huyền BC

BN cắt AM tại G

Do đó: G là trọng tâm của ΔBAC

Suy ra: \(BG=\dfrac{2}{3}BN\)

\(\Leftrightarrow NG=ND=\dfrac{1}{3}BN\)

\(\Leftrightarrow BG=GD\)

hay B và D đối xứng nhau qua G