K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

a. vì AB=AC => tam giác ABC là tam giác cân 

Xét tam giác ABC ta có :

   AB=AC (gt)

   AM cạnh chung

   BM=CM (tam giác ABC là tam giác cân)

=> tam giác ABM = tam giác ACM ( c.c.c )

21 tháng 11 2017

b. ta có : AB=AC ; BM=CM

=> AM vuông góc BC

Sửa đề: Cho tam giác ABC cân tại A

a: XétΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của góc BAC

Ta có:ΔABM=ΔACM

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC tại M

c:

Ta có: AM\(\perp\)BC tại M(cmt)

mà D\(\in\)AM

nên DM\(\perp\)BC

Xét ΔDBC có

DM là đường cao

DM là đường trung tuyến(M là trung điểm của BC)

Do đó: ΔDBC cân tại D

=>DB=DC

d: AH+HB=AB

AK+KC=AC

mà HB=KC

và AB=AC

nên AH=AK

Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{AC}\)

nên HK//BC

22 tháng 2 2018

B C M E F

a,Xét \(\Delta ABM\)\(\Delta ACM\)có:

AB = AC (gt), MB = MC (gt), AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)(đpcm)

b,Théo câu a, \(\Delta ABM=\Delta ACM\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{AMB}=90^o\)=> AM vuông góc với BC (đpcm)

c,Xét \(\Delta EBC\)\(\Delta FCB\)có:

BE = CF (gt), \(\widehat{EBC}=\widehat{FCB}\left(gt\right)\),BC chung

=> \(\Delta EBC=\Delta FCB\left(c-g-c\right)\)(đpcm)

d, \(gt\Rightarrow AE=AF\Rightarrow\Delta AEF\)cân tại A\(\Rightarrow\widehat{AEF}=180^o-\widehat{\frac{A}{2}}\)

\(gt:AB=AC\Rightarrow\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=180^o-\widehat{\frac{A}{2}}\)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)mà 2 góc này nằm ở vị trí đồng vị \(\Rightarrow\)EF//BC (đpcm)

28 tháng 2 2021

a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)

b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC 

c) Tam giác EBC và FCB có 

EB = FC

\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)

BC chung

=> tam giác EBC = tam giác FCB (c.g.c)

d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)

=> tam giác IBC cân tại I => IB = IC

Xét tam giác AIB và AIC có

AI chung

AB =AC (gt)

IB=IC

=> tam giác AIB = AIC (c.c.c)

=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)

=> AI là tia phân giác của \(\widehat{BAC}\) (1)

Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac

=> AM là tia pgiac của \(\widehat{BAC}\) (2)

từ 1 và 2 => A,I,M thẳng hàng

e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)

Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)

Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB

 

a. vì AB=AC => tam giác ABC là tam giác cân 

Xét tam giác ABC ta có :

   AB=AC (gt)

   AM cạnh chung

   BM=CM (tam giác ABC là tam giác cân)

=> tam giác ABM = tam giác ACM ( c.c.c )

b. ta có : AB=AC ; BM=CM

=> AM vuông góc BC

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng

18 tháng 12 2021

cứu emm

 

7 tháng 1 2022

Còn cái nịt

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:

a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (giả thiết)

$AM$ chung

$BM=CM$ (cmt)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b) 

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$

Xét tam giác $BAK$ và $CAK$ có:

$BA=CA$ (gt)

$AK$ chung

$\widehat{BAK}=\widehat{CAK}$ (cmt)

$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)

$\Rightarrow KB=KC$ 

c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$

hay $\widehat{EBK}=\widehat{FCK}$

Xét tam giác $EBK$ và $FCK$ có:

$\widehat{EBK}=\widehat{FCK}$ (cmt)

$BK=CK$ (cmt)

$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)

$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)

$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$

$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$

$KB=KC$ nên tam giác $KBC$ cân tại $K$

$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$

Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$ 

Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined