Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. vì AB=AC => tam giác ABC là tam giác cân
Xét tam giác ABC ta có :
AB=AC (gt)
AM cạnh chung
BM=CM (tam giác ABC là tam giác cân)
=> tam giác ABM = tam giác ACM ( c.c.c )
Sửa đề: Cho tam giác ABC cân tại A
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
mà tia AM nằm giữa hai tia AB,AC
nên AM là phân giác của góc BAC
Ta có:ΔABM=ΔACM
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC tại M
c:
Ta có: AM\(\perp\)BC tại M(cmt)
mà D\(\in\)AM
nên DM\(\perp\)BC
Xét ΔDBC có
DM là đường cao
DM là đường trung tuyến(M là trung điểm của BC)
Do đó: ΔDBC cân tại D
=>DB=DC
d: AH+HB=AB
AK+KC=AC
mà HB=KC
và AB=AC
nên AH=AK
Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{AC}\)
nên HK//BC
a,Xét \(\Delta ABM\)và\(\Delta ACM\)có:
AB = AC (gt), MB = MC (gt), AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)(đpcm)
b,Théo câu a, \(\Delta ABM=\Delta ACM\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{AMB}=90^o\)=> AM vuông góc với BC (đpcm)
c,Xét \(\Delta EBC\)và\(\Delta FCB\)có:
BE = CF (gt), \(\widehat{EBC}=\widehat{FCB}\left(gt\right)\),BC chung
=> \(\Delta EBC=\Delta FCB\left(c-g-c\right)\)(đpcm)
d, \(gt\Rightarrow AE=AF\Rightarrow\Delta AEF\)cân tại A\(\Rightarrow\widehat{AEF}=180^o-\widehat{\frac{A}{2}}\)
\(gt:AB=AC\Rightarrow\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=180^o-\widehat{\frac{A}{2}}\)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)mà 2 góc này nằm ở vị trí đồng vị \(\Rightarrow\)EF//BC (đpcm)
a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)
b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC
c) Tam giác EBC và FCB có
EB = FC
\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)
BC chung
=> tam giác EBC = tam giác FCB (c.g.c)
d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)
=> tam giác IBC cân tại I => IB = IC
Xét tam giác AIB và AIC có
AI chung
AB =AC (gt)
IB=IC
=> tam giác AIB = AIC (c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)
=> AI là tia phân giác của \(\widehat{BAC}\) (1)
Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac
=> AM là tia pgiac của \(\widehat{BAC}\) (2)
từ 1 và 2 => A,I,M thẳng hàng
e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)
Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)
Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB
a. vì AB=AC => tam giác ABC là tam giác cân
Xét tam giác ABC ta có :
AB=AC (gt)
AM cạnh chung
BM=CM (tam giác ABC là tam giác cân)
=> tam giác ABM = tam giác ACM ( c.c.c )
b. ta có : AB=AC ; BM=CM
=> AM vuông góc BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
Xét ΔDAM và ΔEAM có
DA=EA
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔDAM=ΔEAM
=>MD=ME
c: Xét ΔNKD và ΔNMB có
NK=NM
\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)
ND=NB
Do đó: ΔNKD=ΔNMB
=>\(\widehat{NKD}=\widehat{NMB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên KD//BM
mà M\(\in\)BC
nên KD//BC
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Ta có: KD//BC
DE//BC
KD,DE có điểm chung là D
Do đó: K,D,E thẳng hàng
Lời giải:
a) Vì $M$ là trung điểm của $BC$ nên $BM=CM$
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (giả thiết)
$AM$ chung
$BM=CM$ (cmt)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
b)
Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$ hay $\widehat{BAK}=\widehat{CAK}$
Xét tam giác $BAK$ và $CAK$ có:
$BA=CA$ (gt)
$AK$ chung
$\widehat{BAK}=\widehat{CAK}$ (cmt)
$\Rightarrow \triangle BAK=\triangle CAK$ (c.g.c)
$\Rightarrow KB=KC$
c) Từ tam giác bằng nhau phần b suy ra $\widehat{ABK}=\widehat{ACK}$
hay $\widehat{EBK}=\widehat{FCK}$
Xét tam giác $EBK$ và $FCK$ có:
$\widehat{EBK}=\widehat{FCK}$ (cmt)
$BK=CK$ (cmt)
$\widehat{EKB}=\widehat{FKC}$ (đối đỉnh)
$\Rightarrow \triangle EBK=\triangle FCK$ (g.c.g)
$\Rightarrow EK=FK$ nên tam giác $KEF$ cân tại $K$
$\Rightarrow \widehat{KEF}=\frac{180^0-\widehat{EKF}}{2}(1)$
$KB=KC$ nên tam giác $KBC$ cân tại $K$
$\Rightarrow \widehat{KCB}=\frac{180^0-\widehat{BKC}}{2}(2)$
Từ $(1);(2)$ mà $\widehat{EKF}=\widehat{BKC}$ (đối đỉnh) nên $\widehat{KEF}=\widehat{KCB}$
Hai góc này ở vị trí so le trong nên $EF\parallel CB$ (đpcm)