K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

câu a : làm như bài trên mà mk đã làm

Cho tam giác ABC, AB < AC. Trung tuyến AM.a) CMR: góc CAM < góc BAMb)Từ M vẽ tia Mx sao cho góc BMx nhận tia MA là tia phân giác của góc đó.Gọi D là giao điểm của tia Mx với cạnh AC. CMR: BM>MD

=> đìu ko thể chug mih

câu b :

Ta có :AB < AC

=> góc AMB < góc AMC ( đìu ko thể chug mk)

19 tháng 3 2016

vì vô lý chắc vx

a: Xét ΔABM và ΔACM có

AB=AC
BM=CM

AM chung

=>ΔABM=ΔACM

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AH=AK

=>AH/AB=AK/AC

=>KH//BC

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc AMB=góc AMC=180/2=90 độ

=>AM vuông góc BC

b: Xét ΔIBC và ΔINA có

IB=IN

góc BIC=góc NIA

IC=IA

=>ΔIBC=ΔINA

=>góc IBC=góc INA

=>BC//NA

 

a) Xét ΔABM và ΔDCM có 

MB=MC(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MA=MD(gt)

Do đó: ΔABM=ΔDCM(c-g-c)

b) Ta có: ΔABM=ΔDCM(cmt)

nên AB=CD(Hai cạnh tương ứng)

mà AB<AC(gt)

nên CD<AC

Xét ΔACD có 

CD<AC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CAD}\)

và góc đối diện với cạnh AC là \(\widehat{ADC}\)

nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)

mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)

nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)

17 tháng 12 2014

a)xét tam giác AMB và tam giác AMC

         AB=AC ( giả thiết )

         AM cạnh chung        

        BM = CM (M là trung điểm cạnh BC)

 Vậy tam giác AMB = tam giác AMC

 

        

17 tháng 12 2014

a. Chứng minh tam giác AMB = tam giác AMC :

AM là cạnh chung 

AB = AC ( giả thiết )

BM = MC ( vì M là trung điểm của tam giác ABC )

Xuy ra : tam giác AMB = tam giác AMC

a) Xét ΔAMB và ΔAMC , có:

\(\hept{\begin{cases}AM-chung\\AB=AC\left(gt\right)\\MB=MC\left(TĐBC\right)\end{cases}}\)( TĐBC : trung điểm BC nha )

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

b) Ta có :^BAM = ^MAC ( \(\Delta\)AMB = \(\Delta\)AMC )

=> AM là tia phân giác của ^BAC