K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

a) tam giác AMB và AMC có :

AM là cạnh chung 

AB=AC(giả thiết)

MB=MC( M trung điểm của BC)

=>tam giác AMB=AMC(c-c-c)

b) tam giác AMB =AMC(cm trên)

=> góc BAM = CAM (hai góc tương ứng)

mà AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c)tam giác AMB = AMC (cm trên)

=> góc AMB = AMC( 2 góc tương ứng)

mà góc AMB+AMC=180o

=> góc AMB=AMC=180/2=90o

=> AM vuông góc với BC

nhớ vẽ hình

tick nha

 

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)

5 tháng 2 2017

xét tam giác amb và tam giác amc có

AB=AC(GT)

BM=MC(GT)

AM CHUNG(GT)

=> TAM GIÁC AMB = TAM GIÁC AMC (CCC)

AI K MK MK K LAI 3 K

3 tháng 1 2017

Hình tự vẽ...

a) Xét \(\Delta AMB\)\(\Delta AMC\) có:

AB = AC ( giả thiết )

AM: Cạnh chung

AM = BM ( Vì M là trung điểm của BC )

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\) (đpcm)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng)

Ma lại có: \(\widehat{AMB}+\widehat{AMC}=180\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180}{2}=90^o\)

=> AM vuông góc với BC

b) Vì \(CE\perp AB\)\(AM\perp BC\)

=> EC // AM ( Từ vuông góc đến song song )

c) Vì tam giác ABC vuông cân

\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^o\)

\(\Rightarrow\widehat{ACE}=90^o-45^0=45^0\)

Xét \(\Delta ACE\)\(\Delta ACE\) , có:

\(\widehat{ACE}=\widehat{ACB}=45^0\)

\(\widehat{CAE}=\widehat{BAC}=90^0\)

AC: Cạnh chung

=> \(\Delta ACE=\Delta ACB\left(g.c.g\right)\)

=> CE = CB (hai cạnh tương ứng)

A B C M

Ta có : AB = AC => tam giác ABC cân tại A

Ta lại có :

 B = C ( do ABC cân )

AH chung

BM = MC ( gt )

=> AMB = AMC ( c- g - c )

b) Ta có ABC cân 

MÀ M là trung điểm của BC

=> AM là đường cao của ABC

=> AM vuông với BC

13 tháng 7 2016

A B C D E M .. ..

a)  Xét \(\Delta AMB\)và \(\Delta AMC\)có:

AB = AC (gt)

AM : cạnh chung (gt)

BM = CM (gt)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

b) \(\Delta ABC\): có M là trung điểm BC => AM  là đường trụng trực của BC.

Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao. 

\(\Rightarrow AM\)vuông góc \(BC\)

c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:

AC = AB  (gt)>
Góc A : góc chung (gt)

Do AB = AC(gt) : BD = CE (gt)

=> AB - BD = AC - CE 

=> AD = AE.

Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)

d) \(\Delta ABC\)cân có:

BD = CE

2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).