Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác AMB và AMC có :
AM là cạnh chung
AB=AC(giả thiết)
MB=MC( M trung điểm của BC)
=>tam giác AMB=AMC(c-c-c)
b) tam giác AMB =AMC(cm trên)
=> góc BAM = CAM (hai góc tương ứng)
mà AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c)tam giác AMB = AMC (cm trên)
=> góc AMB = AMC( 2 góc tương ứng)
mà góc AMB+AMC=180o
=> góc AMB=AMC=180/2=90o
=> AM vuông góc với BC
nhớ vẽ hình
tick nha
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)
xét tam giác amb và tam giác amc có
AB=AC(GT)
BM=MC(GT)
AM CHUNG(GT)
=> TAM GIÁC AMB = TAM GIÁC AMC (CCC)
AI K MK MK K LAI 3 K
Hình tự vẽ...
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
AB = AC ( giả thiết )
AM: Cạnh chung
AM = BM ( Vì M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\) (đpcm)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng)
Ma lại có: \(\widehat{AMB}+\widehat{AMC}=180\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180}{2}=90^o\)
=> AM vuông góc với BC
b) Vì \(CE\perp AB\) và \(AM\perp BC\)
=> EC // AM ( Từ vuông góc đến song song )
c) Vì tam giác ABC vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^o\)
\(\Rightarrow\widehat{ACE}=90^o-45^0=45^0\)
Xét \(\Delta ACE\) và \(\Delta ACE\) , có:
\(\widehat{ACE}=\widehat{ACB}=45^0\)
\(\widehat{CAE}=\widehat{BAC}=90^0\)
AC: Cạnh chung
=> \(\Delta ACE=\Delta ACB\left(g.c.g\right)\)
=> CE = CB (hai cạnh tương ứng)
A B C M
Ta có : AB = AC => tam giác ABC cân tại A
Ta lại có :
B = C ( do ABC cân )
AH chung
BM = MC ( gt )
=> AMB = AMC ( c- g - c )
b) Ta có ABC cân
MÀ M là trung điểm của BC
=> AM là đường cao của ABC
=> AM vuông với BC
A B C D E M .. ..
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
AM : cạnh chung (gt)
BM = CM (gt)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) \(\Delta ABC\): có M là trung điểm BC => AM là đường trụng trực của BC.
Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao.
\(\Rightarrow AM\)vuông góc \(BC\)
c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
AC = AB (gt)>
Góc A : góc chung (gt)
Do AB = AC(gt) : BD = CE (gt)
=> AB - BD = AC - CE
=> AD = AE.
Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)
d) \(\Delta ABC\)cân có:
BD = CE
2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).