Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nối D với E vì DA = 2 cm => D là trung điểm của AB ( AB = 4cm)
vì AE = 3 cm => E là trung điêm của AC ( AC= 6 cm)
XÉT tam giác ABC
D là trung điểm của AB
E là trung điểm của AC
=> DE là đường trung bình của tam giác
=> DE // BC ( đường trung bình // với đáy bằng nửa đáy)
a,Xét tam giác ADE va tam giác ACB :
Có:AE/AB=3/9=1/3
 góc chung
AD/AC=4/12=1/3
=>tg ADE đồng dạng tg ACB(cgc)
=>AD/AC=AE/AB
b, Vì tg ADE đồng dạng tg ACB(cmt)
=> AD/AC=AE/AB=DE/CB
Mà:AD/AC=AE/AB=1/3
=>DE/CB=1/3
a: Xét ΔBAC có
AD/AB=AE/AC(2)
nên DE//BC
b: Xét ΔABM có DN//BM
nên DN/BM=AD/AB(1)
Xét ΔACM có NE//MC
nên NE/MC=AE/AC(3)
Từ (1), (2) và (3) suy ra DN/BM=NE/MC
=>DN/NE=5/2
hay DN=2,5NE
Ta có: \(\dfrac{AD}{AB}=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\dfrac{AE}{AC}=\dfrac{3}{6}=\dfrac{1}{2}\)
=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
=> DE//BC ( Theo định lý Ta-lét đảo)
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>ΔADE\(\sim\)ΔABC
b: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
=>AE/4=1/3
hay AE=4/3(cm)
b: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
hay \(AD\cdot AC=AE\cdot AB\)
a) Áp dụng định lý Thales trong tam giác ABC, ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)
b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.
Cảm ơn bạn