Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AE+EC=AC
=>\(EC+\dfrac{2}{5}AC=AC\)
=>\(EC=\dfrac{3}{5}AC\)
\(\dfrac{AE}{EC}=\dfrac{\dfrac{2}{5}AC}{\dfrac{3}{5}AC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)
Xét ΔACB có IE//AB
nên \(\dfrac{IC}{IB}=\dfrac{EC}{EA}=\dfrac{3}{2}\)
b: Xét ΔACB có IE//AB
nên \(\dfrac{IE}{AB}=\dfrac{CI}{CB}=\dfrac{3}{5}\)
AD+DB=AB
=>\(DB+\dfrac{2}{3}AB=AB\)
=>\(DB=\dfrac{1}{3}AB\)
=>AB=3BD
\(\dfrac{IE}{AB}=\dfrac{3}{5}\)
=>\(\dfrac{IE}{3BD}=\dfrac{3}{5}\)
=>\(\dfrac{IE}{BD}=\dfrac{9}{5}\)
Xét ΔFEI có DB//EI
nên \(\dfrac{FD}{FE}=\dfrac{DB}{EI}=\dfrac{5}{9}\)
=>\(FD=\dfrac{5}{9}FE\)
FD+DE=FE
=>\(DE+\dfrac{5}{9}FE=FE\)
=>\(DE=\dfrac{4}{9}FE\)
\(\dfrac{DF}{DE}=\dfrac{\dfrac{5}{9}EF}{\dfrac{4}{9}EF}=\dfrac{5}{9}:\dfrac{4}{9}=\dfrac{5}{4}\)
c: CI/IB=3/2
=>CI=3/2BI
BI+CI=BC
=>\(BC=\dfrac{3}{2}BI+BI=\dfrac{5}{2}BI\)
Xét ΔFEI có DB//EI
nên \(\dfrac{FB}{BI}=\dfrac{FD}{DE}=\dfrac{5}{4}\)
=>\(FB=\dfrac{5}{4}BI\)
mà \(BC=\dfrac{5}{2}BI\)
nên \(\dfrac{FB}{BC}=\dfrac{\dfrac{5}{4}BI}{\dfrac{5}{2}BI}=\dfrac{5}{4}:\dfrac{5}{2}=\dfrac{1}{2}\)
=>\(\dfrac{FB}{FC}=\dfrac{1}{2+1}=\dfrac{1}{3}\)
a: Xét tứ giác AFCD có
E là trung điểm chung của AC và FD
=>AFCD là hình bình hành
b: EG//AB
AB\(\perp\)AC
Do đó: EG\(\perp\)AC
c:
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
a/
Ta có
ED//BC\(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow\frac{6}{8}=\frac{AD}{20}\Rightarrow AD=\frac{20.6}{8}=15cm\)
b/
Ta có
AE=EF=6 cm (F đối xứng A qua E)
BE=AB-AE=8-6=2 cm
FB=EF-BE=6-2=4 cm
Do ED//BC nên
\(\frac{FB}{EF}=\frac{BI}{ED}\Rightarrow\frac{4}{6}=\frac{BI}{ED}=\frac{2}{3}\)
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{8}{6}=\frac{4}{3}\)
\(\Rightarrow\frac{BC}{ED}+\frac{BI}{ED}=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2\left(dpcm\right)\)