K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

A B C 16,2 24,3 32,7

a) Xét \(\Delta A'B'C',\Delta ABC\) có:

\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)

Hay : \(\dfrac{16,2+10,8}{16,2}=\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}\)

=> \(\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}=\dfrac{27}{16,2}\)

=> \(\left\{{}\begin{matrix}A'C'=\dfrac{27.32,7}{16,2}=54,5\left(cm\right)\\B'C'=\dfrac{27.24,3}{16,2}=40,5\left(cm\right)\end{matrix}\right.\)

Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là:

\(A'B'=27cm\)

\(A'C'=54,5cm\)

\(B'C'=40,5cm\)

b) Ta có : \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC-gt\right)\)

Hay : \(\dfrac{16,2-5,4}{16,2}=\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}\)

=> \(\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}=\dfrac{10,8}{16,2}\)

=> \(\left\{{}\begin{matrix}A'C'=\dfrac{10,8.32,7}{16,2}=21,8\left(cm\right)\\B'C'=\dfrac{10,8.24,3}{16,2}=16,2\left(cm\right)\end{matrix}\right.\)

Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :

\(A'B'=10,8cm\)

\(A'C'=21,8cm\)

\(B'C'=16,2cm\)

3 tháng 2 2021

Theo giả thiết ta có: \(A'B'=AB+3=5+3=8\left(cm\right)\).

Do \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\)

\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)

\(\Rightarrow\dfrac{7}{A'C'}=\dfrac{9}{B'C'}=\dfrac{5}{8}\Rightarrow\left\{{}\begin{matrix}A'C'=\dfrac{7.8}{5}=\dfrac{56}{5}\left(cm\right)\\B'C'=\dfrac{9.8}{5}=\dfrac{72}{5}\left(cm\right)\end{matrix}\right.\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)

Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm

8 tháng 2 2018

Bài 2 :

A B C 30,7 21,5 25,3

a) Xét \(\Delta A'B'C'\sim\Delta ABC\) có :

\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)

Hay : \(\dfrac{21,5+6}{21,5}=\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}\)

=> \(\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}=\dfrac{27,5}{21,5}\)

=> \(\left\{{}\begin{matrix}A'C'=\dfrac{27,5.30,7}{21,5}\approx29,27\left(cm\right)\\B'C'=\dfrac{27,5.25,3}{21,5}\approx32,36\left(cm\right)\end{matrix}\right.\)

Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :

\(A'B'=27,5cm\)

\(A'C'\approx29,27cm\)

\(B'C'\approx32,36cm\)

b) Ta có : \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)

Hay : \(\dfrac{21,5-10,5}{21,5}=\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}\)

=> \(\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}=\dfrac{11}{21,5}\)

=> \(\left\{{}\begin{matrix}A'C'=\dfrac{11.30,7}{21,5}\approx15,71\left(cm\right)\\B'C'=\dfrac{11.25,3}{21,5}=12,94\left(cm\right)\end{matrix}\right.\)

Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :

\(A'B'=11cm\)

\(A'C'\approx15,71cm\)

\(B'C'\approx12,94cm\)

8 tháng 2 2018

A B C 13 15 17

Xét \(\Delta A'B'C',\Delta ABC\) có:

\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)

Hay : \(\dfrac{6,5}{13}=\dfrac{A'C'}{17}=\dfrac{B'C'}{15}\)

=> \(\left\{{}\begin{matrix}A'C'=\dfrac{6,5.17}{13}=8,5\left(cm\right)\\B'C'=\dfrac{6,5.15}{13}=7,5\left(cm\right)\end{matrix}\right.\)

AB+BC+AC=18cm

nên AC=6cm

AB/A'B'=AC/A'C'=BC/B'C'=2

=>4/A'B'=6/A'C'=8/B'C'=2

=>A'B'=2; A'C'=3; B'C'=4

3 tháng 6 2021

Vì △ABC∼△A'B'C'

mà A'B' = AB - 12 = 24 - 12 = 12m

=> Ta có tỉ số đồng dạng: AB/A'B' = AC/A'C' = BC/B'C'

=> 24/12 = 42/A'C' = 48/B'C'

=> A'C' = 21m; B'C' = 24m

3 tháng 6 2021

Thank