Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết ta có: \(A'B'=AB+3=5+3=8\left(cm\right)\).
Do \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\)
\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)
\(\Rightarrow\dfrac{7}{A'C'}=\dfrac{9}{B'C'}=\dfrac{5}{8}\Rightarrow\left\{{}\begin{matrix}A'C'=\dfrac{7.8}{5}=\dfrac{56}{5}\left(cm\right)\\B'C'=\dfrac{9.8}{5}=\dfrac{72}{5}\left(cm\right)\end{matrix}\right.\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)
Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm
Bài 2 :
a) Xét \(\Delta A'B'C'\sim\Delta ABC\) có :
\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{21,5+6}{21,5}=\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}\)
=> \(\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}=\dfrac{27,5}{21,5}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{27,5.30,7}{21,5}\approx29,27\left(cm\right)\\B'C'=\dfrac{27,5.25,3}{21,5}\approx32,36\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :
\(A'B'=27,5cm\)
\(A'C'\approx29,27cm\)
\(B'C'\approx32,36cm\)
b) Ta có : \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{21,5-10,5}{21,5}=\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}\)
=> \(\dfrac{A'C'}{30,7}=\dfrac{B'C'}{25,3}=\dfrac{11}{21,5}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{11.30,7}{21,5}\approx15,71\left(cm\right)\\B'C'=\dfrac{11.25,3}{21,5}=12,94\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :
\(A'B'=11cm\)
\(A'C'\approx15,71cm\)
\(B'C'\approx12,94cm\)
Xét \(\Delta A'B'C',\Delta ABC\) có:
\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{6,5}{13}=\dfrac{A'C'}{17}=\dfrac{B'C'}{15}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{6,5.17}{13}=8,5\left(cm\right)\\B'C'=\dfrac{6,5.15}{13}=7,5\left(cm\right)\end{matrix}\right.\)
AB+BC+AC=18cm
nên AC=6cm
AB/A'B'=AC/A'C'=BC/B'C'=2
=>4/A'B'=6/A'C'=8/B'C'=2
=>A'B'=2; A'C'=3; B'C'=4
a) Xét \(\Delta A'B'C',\Delta ABC\) có:
\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC\right)\)
Hay : \(\dfrac{16,2+10,8}{16,2}=\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}\)
=> \(\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}=\dfrac{27}{16,2}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{27.32,7}{16,2}=54,5\left(cm\right)\\B'C'=\dfrac{27.24,3}{16,2}=40,5\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là:
\(A'B'=27cm\)
\(A'C'=54,5cm\)
\(B'C'=40,5cm\)
b) Ta có : \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\left(\Delta A'B'C'\sim\Delta ABC-gt\right)\)
Hay : \(\dfrac{16,2-5,4}{16,2}=\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}\)
=> \(\dfrac{A'C'}{32,7}=\dfrac{B'C'}{24,3}=\dfrac{10,8}{16,2}\)
=> \(\left\{{}\begin{matrix}A'C'=\dfrac{10,8.32,7}{16,2}=21,8\left(cm\right)\\B'C'=\dfrac{10,8.24,3}{16,2}=16,2\left(cm\right)\end{matrix}\right.\)
Vậy các cạnh của \(\Delta A'B'C'\) có độ dài là :
\(A'B'=10,8cm\)
\(A'C'=21,8cm\)
\(B'C'=16,2cm\)