Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Do M là trực tâm của tam giác ABC nên: CM ⊥ AB lại có
Suy ra (ABC): 3x+y+z-14=0
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
a) \(Ox:\left\{{}\begin{matrix}x=t\\y=0\\z=0\end{matrix}\right.\).
Lấy điểm \(M\left(1;0;0\right)\in Ox\).
\(d\left(A,Ox\right)=\dfrac{\left|\left[\overrightarrow{MA},\overrightarrow{u_{Ox}}\right]\right|}{\left|\overrightarrow{u_{Ox}}\right|}=\sqrt{10}\).
\(d\left(B,Ox\right)=\dfrac{\left|\left[\overrightarrow{MA},\overrightarrow{u_{Ox}}\right]\right|}{\left|\overrightarrow{u_{Ox}}\right|}=\sqrt{10}\)
Do đó hai điểm \(A,B\) cách đều trục \(Ox\).
b) Điểm \(C\in Oz\) nên tọa độ điểm \(C\) có dạng \(\left(0;0;c\right)\).
Tam giác \(ABC\) vuông tại \(C\) nên \(CA\perp CB\)
suy ra \(\overrightarrow{CA}.\overrightarrow{CB}=0\)
\(\Leftrightarrow1.\left(-2\right)-3.1-\left(1+c\right).\left(3-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}c=-2\\c=4\end{matrix}\right.\).
c) Mặt phẳng \(\left(Oyz\right)\): \(x=0\).
Hình chiếu của \(A,B\) trên \(\left(Oyz\right)\) lần lượt là \(A'\left(0;-3;-1\right)\), \(B'\left(0;1;3\right)\).
Phương trình hình chiếu của đường thẳng \(AB\) trên \(\left(Oyz\right)\) là phương trình của đường thẳng \(A'B'\).
d) Gọi tọa độ tâm thỏa mãn yêu cầu bài toán là \(I\left(0;a;b\right)\).
Có \(IO=IA=IB\) suy ra
\(a^2+b^2=1^2+\left(a+3\right)^2+\left(b+1\right)^2=2^2+\left(a-1\right)^2+\left(b-3\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-47}{16}\\b=\dfrac{53}{16}\end{matrix}\right.\).
Chọn B
Ta có H (a;b;c) là trực tâm tam giác ABC nên ta có
Đường thẳng đi qua trực tâm H (2;1;1) của tam giác ABC và vuông góc với mặt phẳng (ABC) có vecto chỉ phương có phương trình là