K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Chọn B

Giả sử A (a; 0; 0), B (0; b; 0), C (0; 0; c) với a, b, c ≠ 0

Phương trình mặt phẳng (P) qua A, B, C có dạng: 

Vì (P) đi qua M (3; 2; 1) nên ta có:

Vậy phương trình mặt phẳng (P):

14 tháng 8 2019

Đáp án C

Cách giải:

Gọi tọa độ các giao điểm

Khi đó phương trình mặt phẳng (P) có dạng đoạn chắn

Vì OA=2OB=3OC>0 nên 

TH1: a=2b=3c

TH2: a=-2b=3c

TH3: a=2b=-3c

TH1: -a=2b=3c


Vậy, có 3 mặt phẳng (P) thỏa mãn yêu cầu đề bài.

27 tháng 9 2017

Chọn D

Gọi A (a;0;0), B (0;b;0); C (0;0;c). Ta có OA = |a|; |OB| = b; |OC| = |c|.

Phương trình mặt phẳng đi qua ba điểm A, B, C là 

Theo giả thiết ta có điểm

Vì OA=OB=OC => |a| = |b| = |c| nên ta có hệ phương trình

Vậy có 3 mặt phẳng thỏa mãn.

12 tháng 4 2019

Đáp án D

Phương pháp

Gọi A(a;0;0), B(0;b;0), C(0;0;c)

Chia các trường hợp để phá trị  tuyệt đối và viết phương trình mặt phẳng (P) dạng đoạn chắn.

Cách giải: Giả sử A(a;0;0), B(0;b;0), C(0;0;c)

Vậy có 4 mặt phẳng thỏa mãn yêu cầu bài toán.

7 tháng 9 2019

Chọn D.

23 tháng 1 2018

Chọn C

3 tháng 5 2019

Đáp án D

Ta có: OA → OB, OC => OA → (OBC) => OA → BC

Mặt khác vì AM → BC (M là trực tâm tam giác ABC) nên ta suy ra BC → (OAM) => BC → OM

Chứng minh tương tự ta được AC → OM. Do đó OM → (ABC). Ta chọn: n p → =  OM →  = (1; -2; 3)

Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) - 2(y + 2) + 3(z - 3) = 0  x - 2y + 3z - 14 = 0

19 tháng 4 2018

Đáp án D

Ta có OA  OB, OC => OA  (OBC) => OA  BC.

Mặt khác ta có AM  BC nên ta suy ra BC  (OAM) => BC  OM

Chứng minh tương tự ta được AC  OM. Do đó OM  (ABC).

Ta chọn n P →   =   OM → = (1; 2; 2). Từ đó suy ra phương trình của mặt phẳng (P) là:

1(x - 1) + 2(y - 2) + 2(z - 2) = 0 <=> x + 2y + 2z - 9 = 0

Chọn D

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)