Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có H (a;b;c) là trực tâm tam giác ABC nên ta có
Đường thẳng đi qua trực tâm H (2;1;1) của tam giác ABC và vuông góc với mặt phẳng (ABC) có vecto chỉ phương có phương trình là
Chọn A
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0; 2; 0)
Đường thẳng d cần tìm đi qua I (0; 2; 0) và nhận vectơ làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là
Chọn A
Ta có:
AB² = 10, BC² = 24, AC² = 14 => ∆ABC vuông tại A.
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0;2;0).
Đường thẳng d cần tìm đi qua I (0;2;0) và nhận vectơ làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là
Đáp án B
Phương pháp: - Trọng tâm G của tam giác ABC có tọa độ được tính:
- Phương trình mặt phẳng đi qua M x 0 ; y 0 ; z 0 và có 1 VTPT n → =(a;b;c)
Cách giải: Trọng tâm G của tam giác ABC: G(-1;1;1)
(P) vuông góc với AB => (P) nhận A B → = ( 2 ; 2 ; - 3 ) là một VTPT
Phương trình mặt phẳng (P):
Chọn D