K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\widehat{MAD}=\widehat{BAD}\)(AD là tia phân giác của góc BAC)

\(\widehat{BAD}=\widehat{MDA}\)(hai góc so le trong, AB//DM)

Do đó: \(\widehat{MAD}=\widehat{MDA}\)

=>ΔMAD cân tại M

b: Xét ΔMND và ΔBDN có

\(\widehat{MND}=\widehat{BDN}\)(hai góc so le trong, NM//BD)

ND chung

\(\widehat{MDN}=\widehat{BND}\)(hai góc so le trong, MD//BN)

Do đó: ΔMND=ΔBDN

c: Ta có: ΔMND=ΔBDN

=>MD=BN

mà MD=MA

nên MA=BN

31 tháng 12 2023

a: Sửa đề: Chứng minh ΔABD=ΔAMD

Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM

=>ΔDBM cân tại D

c: Ta có: DB=DM

=>D nằm trên đường trung trực của BM(1)

ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1),(2) suy ra AD là đường trung trực của BM

23 tháng 12 2023

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM

=>ΔDBM cân tại D

c: Ta có: AB=AM

=>A nằm trên đường trung trực của BM(1)

ta có: DB=DM

=>D nằm trên đường trung trực của BM(2)

Từ (1) và (2) suy ra AD là đường trung trực của BM

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>\(BC=\sqrt{25}=5\left(cm\right)\)

b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có

CA chung

AB=AI

Do đó: ΔCAB=ΔCAI

=>CB=CI

=>ΔCBI cân tại C

c: Ta có; ΔCAB=ΔCAI

=>\(\widehat{ACB}=\widehat{ACI}\)

Xét ΔCMA vuông tại M và ΔCNA vuông tại N có

CA chung

\(\widehat{MCA}=\widehat{NCA}\)

Do đó: ΔCMA=ΔCNA

d: Ta có: ΔCMA=ΔCNA

=>CM=CN

Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)

nên MN//IB

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với 

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1

chưa hiểu phần song song